$\mathbf{C} \ \mathbf{C} \ \mathbf{C} \ \mathbf{P}$

MANACIEDCIBO IDANCHOPINORO CIDONIENPCIBA

I M B T P A H C N P O E N T
I N L COO 340P H PO ENT"

железоветонные стольчатые опоры автодорожных мостов с пролетами 40 33 м в северных условиях

PABOURE VEPTE XV

инв N25442 - м

MOCKB 21 1989.

ANNINCTEDCTBO TPAHCHOPTHOTO CTPONTEABCTBA

TAABTPARCIPO EKT

MERESODETORIBLE CTORDIATURE OROPULA BIO40POMIBIX MOCTODERPORETAMI 40 33 M

PASOURE VERTERN

LYAPING HAYENED HOCKLY BAND D. H. KASHEROP
LYAPING HAYENED HOCKLY BAND D. H. KASHEROP
LYAPING HAYENED HOCKLY KASM. D. H. KASHEROP

MOCKB > 1989

d told, Sagues a tata bake, but, a

2	::::::::::::::::::::::::::::::::::::::	намменование	elen Tonn	cTp.
	1 2	Пояснительная записка Расчётные листы		5-9
	20	Промежуточные опоры :		
		Расчётные усилия на столб одностолбчатых опор	I	10
		Расчётные усилия на I столо двухстолочатых опор	Ť	
		при основном сочетании нагрузок	2	41
		Расчётные усилия на I столб двухстолючатых опор		
		в направлении вдоль моста при дополнительном		
	1	сочетании нагрузок	3	12
		Расчётные усилия на I столб двухстолбчатых опор		
		при воздействии ледохода	4	-13
		Расчётные усилия на І столо трёхстолочатых опор		
		при основном сочетании нагрузок	5	14
		Расчётные усилия на І столо трехстолочатых опор		
•		при воздействии ледохода	6.	15
	25	Береговые опоры :		
		Расчетные усилия на I столо береговых опор	7	16
	28	Фундаменты :		
		Графики несущей способности столба в талых и		
77	4	оттаивающих груптах	8	17
		Графики несущей способности столба в вечномерэлом		
		грунте, Дскв. = 1.0 м	9-10	18-19
+	-{	Графики несущей способности столба в вечномерэлом		
4019		грунте, Д скв. = 1.7 м	11,12	20,21
22	22	Проверка столбов на морозное пучение	I4	23
1817	3	Сборочные чертехи промежуточных опор		
ROAN NOLENCE H LOTO	30	Компоновка габаритов		
S &		·.	1	
N SH	-			
120	<u>i </u>		<u></u>	

			2,
п/п	наименование	Melle TONN	c πb•
	Компоновка габаритов для двухстолочатых и трех-	15	24
36	Общие виды промежуточных опор при отсутствии ледо- хода		
	Одностолбчатая опора	16	25
	Двухстолбчатая и трехстолбчатая опоры	17	26
38	Общие виды промежуточных опор при наличии ледохода		
	Двухстолочатая опора	18	27
	Трехстолбчатая опора	19	28
32	Ведомости сборок промежуточных опор		
	Ригели	20	29
	Столбчатая часть, диафрагмы, узлы	21	30
4	Сборочные чертежи береговых опор		
40	Компоновка габаритов		
	Для однорядных опор	22	31
	Для двухрядных опор	23	32
46	Общие виды береговых опор		
	Однорядная опора	24	33
	Двухрядная опора	25	34
	Анкерная опора	26	35
48	Ведомость сборок береговых опор	27	38
5	Φ ундамен $^{ extbf{T}}$ ы на скальных основаниях	28	37
6	Сборные элементы		
64	Блоки столбов		
	CB - L - I	29	38
	CB - L - 2	30	39
	СВ - L - 3 и СВ - L - 4	31	40
1		<u> </u>	

3	12/2 n/n	наименование	ЮМ ЛИСТ	MeMe cTp.
		CB - L - 5	32	41
		CB - L - 5H	33	42
		CB - L - 6	34	43
		СВ - L - 6н	35	44
		CB - L - Зл и CB - L - 4л	36	45
		CC - L - I	37	46
	1 1	CC - L - IH	38	47
		CC - L - 2	39	48
		СС - L - 2н	40	49
		CC - L - 3 M CC - L - 4	4I	50
		СС - L - Зн и СС - L - 4н	42	51
		CH - L	43	52
	66	Ригели		
		Опалубочный чертеж ригелей опор под унифицированные		1
		пролетные строения длиной до 33 м	44	53
		опалубочный чертеж ригелей опор под унифицирован-		
	1 1	ные пролетные строения длиной до 24 м	45	54
		Опалубочный чертеж ригелей опор под пролетные стро-	-	
		ения длиной до 18 м по типовому проекту 710/5	46	55
]	Конструкция ригелей		1.
		Ригели промежуточных одностолбчатых опор		
		PO 18 - 6 - 1,3	47	56
]	P0 I5 - 8 - I,3	48	57
47.4		Po 15 - 8 - 2	49	58
7 H C	1 1	Спецификация и выборка арматуры		
i i	1 1	ригелей РОІВ и РОІБ	50	59
NOGREED W LATE	1 1			
-2	-			
HE. Nº no.A.	4			
AHB.				

119/12 11/11	наименование	МУ ЛИС Т	lee cTp.
Риг	ели промежуточных двухстолочатых опор		
	РД 24 - 6 - I,3	52	eo
	РД 24 - 8 - I,3	53	61
	PA 24 - 8 - 2	54	62
	РД 24 - IO - I,2,3	55	63
	РД 24 - II - I, 3	56	64
Спе	цификация и выборка арматуры ригелей РД 24	57	65
	РД 33 - 6 - I	58	6 6
	РД 33 - 8 - І	59	G7
	РД 33 - 8 - 2	60	88
	PA 33 - IO - I,2	61	69
	РД 33 - II - I	62	70
Спе	цификация и выборка арматуры ригелей РД 33	63	74
Pur	ели промежуточных трехстолочатых опор		
	PI 24 - 6 - I,3	64	72
	PT 24 - 8 - I,3	65	73
	Pf 24 - 8 - 2	66	74
	Pr 24 - 10 - 1,2,3	67	75
	PT 24 - II - I,3	68	76
Спе	цификация и выборка арматуры ригелей РТ 24	69	77
	PT 33 - 6 - I	70	78
	PT 33 - 8 - I	71	79
	PT 33 - 8 - 2	72	80
	Pf 33 - I0 - I,2	73	81
	PT 33 - II - I	74	82
Спе	цификация и выоорка арматуры ригелей РТ 33	75	83
Pur	ели береговых опор		
	•	Ì	
	JULE N 25662 M	<u> </u>	Ц

\$	м/п п/п	наименование	NIE NICT	c Tp.
		PE 24 - 6 - I,8 PE 24 - 8 - I,2,3 PE 24 - IO - I,2,3 PE 24 - II - I,3	76 77 78 79	84 85 86 87
		PE 33 - 6 - I PE 33 - 8 - I,2 PE 33 - 10 - 1,2 PE 33 - II - I	80 81 82 83	88 89 90
•	68	Спецификация и выборка арматуры ригелей РБ 24 и РБ 33 Блоки шкафных стенок береговых опор Опалубочный четек блоков шкафных стенок	84,85 86	92,93 94
,		Армирование блоков шкафных стенок 90 Ш-1, 90 Ш-2 90 Ш-3, 90 Ш-4	87 88	95 96
		Спецификация и выборка арматуры блоков шкафных стенок 90 Ш I20 Ш-I, I20 Ш-2 I20 Ш-3, I20 Ш-4	89 90 91	97 98 99
A414		Спецификация и выборка арматуры блоков шкафных стенок 120 Ш 170 Ш-1 170 Ш-2	92 93 94 95	100 101 102 103
MHB. Nº noah Noanuch 4 4414 25442- M	62	170 Ш-3, 170 Ш-4 Спецификация и выборка арматуры блоков шкафных стенок 170 Ш Анкерный брус и анкерная плита береговых анкерных опор	96	104

			4_
12% п/п	наименование	ieie лис т	:36 c Tp•
	Анкерный брус Б-І	97	105
	Анкерная плита П-І	98	106
63	Диафрагмы промежуточных опор (при наличии ледохода)	99	107
7	Монолитные элементы		
	Набивная часть столба для диаметра скважины І,О м	100	108
	Набивная часть столба для диаметра скважины І,7 м	101	109
	Наголовник Н-1 береговой двухрядной опора	102	110
	. Армирование подферменников	103	111
8	Узлы		
84	Узлы промежуточных опор: №2 1,2,3 соединения риге-		
	ля со столбом и олоков столбов между собой;	104	112
	№ 4 присоединения диафрагмы к столбу (ледоход)	105	113
8б	Узлы береговых опор:		
	窓 5,6 анкерных опор;	106	114
	7,8 соединения ригеля с наголовником и столбом	107	415
	াহে 9,10 соединения шкафной стенки с ригелем и	108	116
	между собой	133	
		er caldens?	1
		##SecTence	
		1.1.	
		Ì	1
		1	
		, }	,
	uhr N 25442-m		<u></u>

NHB N 25442-M

Рабочие чертежи железобетонных столочатых опор автодорожных мостов продетами до ЗЭм в северных условиях

пояснительная записка

І.Общая часть

Рабочие чертежи разрасотаны на основании приказа Минтрансстроя от 15 декабря 1978г. № 273 о плане научно-исследовательских работ на 1979г. /тема 104К-ИС-79, разлел I/, в соответствии с заданием, подготовленным генеральным разработчиком темы ЦНИИС и утвержденным Минтрансстроем, а также письмом Главного технического управления Минтрансстроя об утверждении технического проекта /№ 3734-М/34 от 24.03.80г./. В рабочих чертежах учтены замечания ЦНИИС и Главмостостроя.

Опоры запроектированы для суровых климатических условий под типовые автодорожные пролетные строения длиной до ЗЗм для габаритов Г-6,5, Г-8, Г-10 и Г-11,5. Бысота промежуточных опор /от уровня местного размыва до верха ригеля/ - до 14 м, устои запроектированы для насыши высотой до 10м. Возможно также применение опор по настоящему проекту и в обычных климатических условиях /в случае достаточной несущей способности грунтое основания/, при этом требования к материалам в части морозостойкости бетона и марок сталей могут бить снижены и приведены в соответствие с климатическими условиями района привязки проекта.

Расчет опор произведен с учетом упруго-податливой связи их с пролетными строениями ща счет применения резиновых опорных частей для вариантов схем мостов как разрезных, так и температурно-неразрезных при максимальной длине мостов не более 5 пролетов.

В связи с тем, что Воронежским филналом Гипродорнии в настоящее время разрабатнеается типовой проект столочатых опор автодорожных мостов для обычных климатических условий, принципиальные технические решения которого унифицированы с настоящим проектом, последний не содержит решений для талых и оттаивающих оснований с малой несущей способностью. В этих случаях рекомендуется применять упомянутый типовой проект с дополнительными проверками в необходимых случаях осадок при оттаивании и на пучение, а также с дополнительными требованиями к материалам по настоящему проекту.

П.Конструкции опор

І.Фундаменты

Park the second second

Тип I — буро-обсадной столо, состоящий из опущенного в заранее пробуренную скважину д=I м столоа д = 0,8м. Пространство между стенками скважини и столоом ниже деятельного слоя инъектируется цементно-песчаным раствором. Опускаемая в скважину колонна может состоять из одного или нескольких элементов, стикуемых на месте производства работ сваркой. Суммарный вес колонни - до 30т.

Тип II — нижняя часть фундамента выполняется в виде набивной /монолитной/ сваи д = Im, в несхватившейся бетон которой опускается столо д = 0.8 м, имеющий выпуски арматуры. Пространство между стенками скважины и столоом в промежутке между верхом минолитного бетона и подошвой деятельного слоя инъектируется цементно-песчаным раствором. В этом варианте обеспечивается вес монтажного элемента до 15 т и значительная несущая способность фундамента, ограниченная лишь возможностями бурового оборудования.

Тип III — аналогичен типу II. Разница состоит лишь в диаметре скважини — I,7м и в том что вследствие большого зазора между столоом и с кважиной этот зазор ниже деятельного слоя заполняется бетоном.

Скальное основание - в связи с большой прочностью основания применяется фундаме: т по типу І. Глубина заделки в скалу зависит от степени ее трещиноватости, прочности, мощности и состояния покрывающих скаду отдожений, которые могут закреплять столо от поворота, а также возможности пучения. При отсутствии покровных отложений глубина запелки столбов находится в пределах от 1,6 м до 4 м и рассчитывается по ВСН-II0-64. В случае трещиноватой скали ее рекомендуется учитывать как крупнообломочние отложения.

Особенности использования фундаментов на различных грунтах:

а/ Вечно-мералые грунты, используемые по I принципу /в мералом состоянии/.

В соответствии с ревомендациями ЦНИИС по этому принципу допускается использовать грунти с температурой в уровне нулевых годовых амилитуи /на глубине ІОм от поверхности/ не выше:

- I,0°C для незасоленных несвязных грунтов с льдистостью \int_{b} <0,2 и -I,5°C при $0.2 < \int_{b} < 0.4$ 2°C при $0.2 < \int_{b} < 0.4$

иля засоленных грунтов указанные температуры слепует понизить на I-30 в зависимости от сопержания дегкорастворимых солей.

На этих грунтах могут быть использованы все 3 типа фундаментов. Однако основным следует считать тип I, как обеспечивающий наибольшую сборность и наименьшее время до загружения фундамента, хотя при этом для больших габаритов пол пролеты 33 м и слабых грунтов приходится применять 3-х столочатие опоры.

Ожидается, что в начальной стадии твердения бетон буронабивных свай за счет экзотермии будет иметь температуру на $5-10^{\circ}$ C выше температуры окружающего грунта, что постаточно для набора прочности /без противоморозных побавок/ 75-100 кг/см2. Рекоментуется на стадии опытного строительства обследовать температурный режим в скважине после постройки фундамента с целью опенки степени и скорости набора прочности бетона и продолжительности периода, необходимого для восстановления бытового температурного режима мерадоты для назначения даты загружения фундамента.

Вопрос о возможном сроке нагружения фундаментов связан с рядом факторов: температурой мерэлого грунта, температурой возлуха в период производства работ, скоростью проходки скважин, температурой технологической води, объемом монодитного бетона или раствора. Наименьшим будет время иля опор с меньшими диаметрами скважин и меньшим объемом монодитных работ. На осуществленных мостах это время фактически составляло не менее 5-6 месяцев /как в Якутии, так и в Читинской обл./. Сроки загружения слепует разпелить на этапи:

- загружение собственным весом опоры по мере монтажа
- загружением весом пролетного строения 2-4 месяца
- -загружение эксплуатационной нагрузкой 5-6 месяпев
- б/ Вечно-мерзлые грунты, используемые по 2 принципу /оттаивающие/.

Большинство грунтов, слагающих долини рек и находящихся в вечно-мерзлом состоянии, распучены и дают значительные осадки при оттаивании. Поэтому для рек 2 принцип применим, как правило, только в том случае, если скважини достигают более прочных коренных или других непросадочных грунтов и столон заделываются /на вертикальные силы/ в них.

В этом случае в соответствии со СНиП П-18-76 прочность основания рассчитывается с учетом отрицательной силы трения оттаивающего грунта. В остальных случаях, если обеспечиваются проверка фундамента на осадку после оттаивания по п.4.22 СНиП П-18-76 и на пучение, фундамент проектируется как в обычных грунтовых условиях. При недостаточно прочных грунтах возможно применение лишь фундаментов типа П или III.

HB. Nº NOGA. NOGAUCE U GATA 532M. D

M-2445

Границы применимости для разного количества столбов устанавдиваются по расчетным листам, приведенным в проекте. Для случаев, выходящих за эти границы следует пользоваться типовым проектом Воронежского филиала Гипродорнии /с учетом требования к материалам по настоящему проекту/.

в/ Талие грунты

Для талых грунтов применение фундаментов по настоящему проекту возможно лишь для грунтов с большой и средней несущей способностью. Границы применимости устанавливаются по расчетным листам. Для более широкого диапазона грунтовых условий и способов производства работ следует пользоваться упомянутым выше типовым проектом столбчатых опор Воронежского филиала Гипродорнии с введением требований к материалам по настоящему проекту.

2. Промежуточние опоры

Промежуточние опоры запроектированы двухстолочатыми и трехстолочатыми с вариантами на пропуск небольшого ледохода и без учета ледохода и одностолочатыми для условий отсутствия ледохода. По замечаниям Глаемостостроя в рабочих чертежах сокращено количество типоразмеров ригелей. Объединение ригелей со стойками - обетонированием выпусков арматуры.

Рабочее армирование ригелей предусмотрено арматурой класса А-Ш марки 2512С /ТОСТ-5781-75/ в вязанных каркасах. Рабочее армирование столоов в зоне неодинаковых моментов вдоль и поперек мостам /верхняя секция столоа/ - направленное. Продольная арматура столоов - класса А-П марки 101Т /ТОСТ-5781-75/, для которой в суровых климатических условиях допускается сварка.

а/ Одностолбчатие опоры

Одностолочатие опоры по несущей способности материала столоа допустимы лишь для габаритов 6,5 и 8м с пролетами длиной не более 18м и высотами от уровня местного размыва до 4-6 м.

б/ Двухстолбчатие опоры

Двухстолочатие опори по несущей способности материала столоа обеспечивают весь заданный диапазон высот, продетов и габаритов. Поэтому они являются основным вариантом опор. Ограничивающим фактором является несущая способность фундаментов по грунту. При недостаточной несущей способности оснований винужденным мероприятием является переход на трехстолочатие или даже на опоры по другим провитам.

в/ Трехстолбчатие опоры

Трехстолочатые являются экономически менее целесообразными по сравнению с двухстолочатыми и поэтому по возможности следует ограничивать их применение.

г/ Двух и трехстолочатие опоры для условий пропуска небольшого ледохода.

Столбчатие опори недостаточно мощни для восприятия значительного ледохода. Поэтому в настоящем проекте приведени рабочие чертежи опор, которые могут противостоять лишь небольшому ледоходу с толщиной льда до 0,6 м /при климатическом коэффициенте 2/. При этом в случае внеоти опоры от местного размыва до 6м усиление опоры на ледоход осуществлено увеличением армирования столбов, а для большей высоти также постановкой мощной диафрагмы при усиленном армировании столбов.

З.Устом

Устои запроектировани по типу двухстолбчатых промежуточных опор с ригелями в тех же опалубочных формах, дополненными установкой закладных деталей для прикрепления блоков шкафных стенок. Унификация ригелей промежуточных опор и устоев оказалась возможной при выполнении шкафных стенок по типу заборных стенок без обратных крыльев. В целях обеспечения устоев против выпучивания конуса устоев должны отсыпаться из непучинистых дренирующих грунтов: песка, крупнообломочных отложений или горной массы.

Основным типом устоя является двухстолочатый однорядный устой. Он применим при высотах насыпей до 3м или при предварительном устройстве конусов с недосыпкой на 3м при тщательном уплотнении предварительно отсыпанной насыпи.

На случай невозможности предварительной отсыпки конуса разработаны следующие два варианта устоя при высотах насыпи от 3 до 10м:

- Бариант анкерного устоя, представляющий из себя ту же двухстолочатую однорядную опору с усилением с помощью анкеров трения в виде горизонтально уложенных анкерных плит. Соединение анкеров со стойками осуществляется с помощью железобетонного бруса, прикрепляемого с помощью сварки с накладным металлическим хомутом, одеваемым на столон, и закладной деталью на анкерных плитах.
- Вариант двухрядного четырехстолочатого устоя. Каждая пара столоов объединяется в направлении вдоль моста соорными балочками, на которые монтируется ригель опоры.

Преимуществами I варианта ярляются меньший объем железобетона и буровых работ, возможность более скоростного строительства при относительной сложности узла соединения столба с железобетонным брусом анкера, тогда как преимуществом 2 варианта является простота всех соединений. Ответ на вопрос о большей целесообразности строительства того или другого варианта должно дать опытное строительство.

Ш. Требования к материалам

а/ Арматура и закладные детали

Назначение арматуры	Класс арматур- ной стали	Диаметр стержня, мм		Армирование сварными каркасами или сеткам	
Распределительная арматура	A-I	6–8	ECT3 nc2, BCT3Inc2 no IOCT	578I - 75,	
Арматура монтажных петель	A-I A-II	10–32	ВСтЗсп2 по ГОСТ 578 IO ГТ по ГОСТ 578I—		
Рабочая арматура всех элементов	A-II	10-32	10 IT no IOCT 578I-	75	
опор	A-III	8-32	25Г2С по ГОСТ 578І-75	-	
Закладные детали			10 Г2СЦД или 15ХСНД по ГОСТ	19281-73	
			и 19282-72 с ударной вязкос	тью	
			25 kg/cm2 iipu $t = -70^{\circ}$ C ii		
			$3 \text{ кг/см2 при } t = 20^{\circ} \text{C по}$ старения.	сле межанического	,
			Сталь I5ХСНД применять при туре не ниже -50°С.	-всчетной темпера-	

б/Бетон

В соответствии с рекомендациями ЦНИИС, ВСН I55-69 и ВСН I5I-78 марка бетона столбов, а из унификации и остальных сборных конструкций и бетона их омоноличивания принята 400; по морозостойкости - MP3-300.

В качестве вяжущего для бетона сборных конструкций и омоноличивания следует применять портландцемент по ГОСТ 10178-76 с учетом ограничений по ВСН 155-69 и СНиП П-43-75. Заполнители для бетона должны удовлетворять требованиям п.п.4.23, 4.24, 4.25 СНиП П-43-75 и следующим дополнительным требованиям:

- прочность в водонасыщенном состоянии породы, используемой на щебень, не ниже 1200 кг/см2, а водопоглощение не более 0,5%;
- наибольшая крупность фракций не должна превышать 20 мм;
- заполнители /песок и щебень/ не должны содержать опал и другие амороные видоизменения кремнезема:
- в часть бетонной смеси обязательно введение одной из комплексных добавок /СДБ+СНВ, СДБ+ГКЖ-94, СДБ+СПД/.

Волоцементное отношение бетонной смеси не должно превышать 0,42.

ІУ. Порядок пользования рабочими чертежами

- І. Назначается схема моста исходя из гидрологических расчетов, плана и профиля перехода. На этой стадии определяется общий и местный размиви.
- 2. Производится I попытка привязки одностолочатой или двухстолочатой промежуточних опор на основании следующих факторов: высота опор над уровнем местного размыва, величина пролетов и габарит моста.
 - З.Для выбранного типа опоры по расчетным листам устанавливается максимальная расчетная вертикальная нагрузка /листы № 1-4 /.
- 4.По графикам несущей способности основания для конкретных геологических условий определяется необходимая глубина заделки столба. /листы км 8-43 /.
 - 5. Производится проверка на пучение /лист № 14 /.
- 6.Если потребная глубина заделки столба оказывается неприемлемой по технологическим соображениям делается попытка привязки трехстолбчатой промежуточной опоры описанным выше способом.
- 7.После привязки промежуточных опор назначаются типы устоев, исходя из высоты конусов. Дальнейший ход назначения глубины заделки столбов аналогичен описанному для промежуточных опор.

Главный специалист ОИС

Mas Comp

/М.Г.Ивянский/

/В.И.Кузнецов/

Главный инженер проекта

14 6. Nº 104A. 1304. 1104 4 4414 25442-M

B3AM. UHS. N

PACYETHERE YCUMUS HA CTOME DAHOCTOMEYATELY OFFICE

	Высота опоры от УРВНЯ	Осн	овное	204	не та	HUE	на	грузс			Дополнительное					СОЧЕ ППАНИЕ НАГРУЗОК					
Γαδα.	DIAMKER	12			15			Проле <i>1</i>			12			15			18				
pum	М	N, r	M,TM	Н, т	N,r	M,TM	H, +	N, 7	Mith	Н,т	N.r	M,TM	Н.т	N,r	M,TM	Н, т	N. r	M,TM	H, ,		
6,5	4	293	7	0	330	7	0	400	6	0	194	136	4,4	193	140	6.7	234	176	8,1		
0.5	6	285	7	0	333	7	0	402	6		197	145	4,4	195	153	6,7	236	192	8.1		
8,0	4	334	7	0	382	7	0	_			2/6	169	4,4	220	170	6.7	- .	- ,	_		

Примечания: 1. Основное сочетание нагрузок: вес 2^* пролетных сторений n > 1 + временная нагрузок (гольным н.30 и толпа на 2^* тротуррах на 2^* пролетах n = 14) г. Дополнительное сочетание нагрузок: вес 2^* пролетных строений n = 0.9 + временная нагрузок (1 колонна н.30 и толпа на 1 тротурра на 2^* пролетах n = 1,12) + 2^* ноперечные удары 2^* деятельного слоя, изгибаносцие моменты - можемпальные сомы деятельного слоя, изгибаносцие моменты - можемпальные

NO BUICOTE CTONEQ

		Железобетонные ста автодорожных мост	000421	nbie	опоры
		Промежуточные опоры Росчетный лист			Macurin
Нач. ОИС Постовой		Pacyethola Juct	P		
THO OUC KY3 HELOB	300 1	CTONE DEHOCTONEHATION	Aucm.	I Auc.	mob
PYK. PPUZ. KPOMM	MADRE	_	Co.	40300P	npoexm
Пров. Кузнецов Разраб. Смыслова	City			z. Moc	x6a
7207201 0770107000					

ИНВ. N 25442 - M

ra _b	высото опоры от чровня		12		1	15	········	<u> </u>	18			2 1	•	-	24	T	1	M	IH
A P J	размыва	Z	м	Н	7	M	Н	7		ГШ	17	M		243	8	0	350	13	0
۱۳.	6	155	#	D	175	10	0	210	9	0	214	9	0	246	8	0	351	13	0
	8	158	11	D	178	10	D	213	9	0	216	9	0		8	1	354	13	0
6.5	10	161	11	0	181	10	0	216	9	0	219	9	0	249	8	0	359	13	0
	14	166	11	0	186	10	n	221	9	0	224	9	0	254	-	0	440	13	0
	6	186	11	B	209	10	0	255	9	0	259	9	0	295	8	0	441	13	0
a	8	190	11	0	212	10	D	258	9	0	263	9	0	298	0	10	444	13	1-0-
Ď	10	193	11	0	215	10	0	261	9	0	266	g	.0	301	-8	10	449	13	0
	14	198	11	0	220	10	0	266	g.	0	271	9	0	306		 	480	17	0
	G	224	16	0	242	13	0	298	12	, 0	297	12	0	335	//	0	482	17	0
	8	227	16	0	245	13	0	301	12	0	300	12	0	338		<u> </u>		17	
10	. 10	230	16	0	248	13	D	304	12	.0	303	12	0	341		0	485		- 0-
	14	235	16	0	253	13	0	309	12	0	308	12	0	347	//	0	490	17	0
	6	247	16	0	267	13	0	325	12	0	327	12	0	370		0	522	17 .	⊢.0
	8	250	16	-0	270	13	0	328	12	. 0	329	12	0	373	11	0	524	17	0
11.5	10	253	16	0	273	13	0	332	12	0	333	12	0	376	#	0	527	17	0
	14	258	16	0	278	13	.0	336	12	0	338	12	0	381		' 0	532	17	0
Расче. Времен	MHDIE G	ycunug Ozpysk	: bec	gbyi gepyn	с прол	हमामधाः वि	х стр	поений, ГС	E		1			Mene: OPOPE Промеж	I ABT	oro		IX HC	00101
полпой Расче Вошви	THOSE	одном УСИЛ ЯТЕЛЬ	тр ия д 154020	отуар аны в СПО	e. Ins cevi s.	ehun (g ypol	she no	7 - 1 HA	EH DIIC 4	осто <i>вой</i> Вянский (узне цов	9		Принеж Расче Вучеты Пом соце	THOIÚ THOIÚ TOUX O	NUCT IN HOLC NOP NOL	- TONT 1 OCHOB-	P	•

HHG. N RODINGS Bara

CONSLOPADORT NHB N 25442-M

		B"HA	الله المالية	DACI	IE TH b	E YC	RUAU	HAIC THEKO		ABY,	OT 3X	ABYAT uu H	DIX O	NOP ok					M	
r _A ₅	Abo auol BPIC	070 DЫ 07		1 2	TOND CI	P	1 5.	(18			2 1			2 4		_	3 3.	
1		M	N	. <u>-</u> М I	Н	7	M	Н	7	MI	Ы	2	M	П		M	H		95	1 8
	E	3	102	50	4	115	55	5	132	60	5	150	67	6	168	74	6	222	80	5
6.5	8	3	105	43	٠.3	117	48	3	134	51	4	152	57	4	169	62	4	225	68	4
0.0		0	107	37	:2	120	41	2	.137	45	3	154	48	3	172	53	3	227	52	2
	1	4	111	29	./	124	34	1	141	39	2	158	41	2	176	42	2	231	96	8
		6	103	50	4	117	56	5	140	61	5	156	67	6	175	75	7	234	79	5
8		8	105	43	3	119	49	3	142	52	4	159	57	4	177	61	4	239	67	4
"	. 1	0	108	37	2	121	42	2	145	46	3	162	48.	3	180	52	3	243	50	2
	1	4	112	29	1	126	35		149	40	2	166	41	2	183	39	1	308	98	8
	-	6	137	- 56	4	155	61	5	183	67	5	205	74	6	228	83	7	311	79	5
10		8	140	49	3	158	54	3	185	58	4	207	64	4		69	4	313	66	3
''	-	10	142	43	2	160	47	2	188	52	3	210	55 48	3	233	<i>59 45</i>	3	317	48	2
-	- -	14	146	35	/	164	40	1/	192	46	2	214	-	2	229	99	1	311	112	10
1	-	6	134	72	6	152	78	7	181	84	7	206	 	8			8 5	314	92	6
111.	a ⊩-	8	136	65	4	155	68	5	183	77		208		5	231	81		316	84	5
		10	139	56	3	158	63	3	186		2	211	62	2	233	68	3	318	67	3
		14	143	44	12	162	52	1-	1 190	1 30		1 2/3	. 02	1_4	1 237		1	1 5/6		1

Расчетные усилия: вес двух прозетных строений подвременной магрузкой загружен один прозет с толной на одном тронуара, торможение.
Вертикальные силы даны для сечения в уровне по-

Вертикальные силы даны для сечения в уровне подошвы деятельного слоя, изгибающие моменты-максимальные по высоте столба.

448.42.M

					алото віднотварсяляж Оом хіднжогодопал	MOB	•	•
					Промежуточные опоры Расчетный лист	C10342	Blacea	MOCHIOS
ı	Hay. OUC	Посто вой	01		POCHETHINE HOURING UN LOTAL	P	1	
7	Гаспецок	KY3 Heiso 6	Kan	<u> </u>	ДВУХСТОЛБИАТЫХ ОПОР В НАПРАВ- ЛЕНИИ ВДОЛЬ МОСТА ПРИ ДОЛО-			
	Pacopul.	Kponn	Migion		янительном сочетании нагруз.			40108
	Parossia	KY3HEUDB	Ky	-		Con	039 0 PM	POPRT

NHB. N 25442 - M

- A-a A	BUCOTA	Π	IVNE H	ρ	A BY	<u> </u>	<u> </u>	<u> </u>	T	Ь			
PUT	YEYOXOVA		2	15		1	8	2		2		3	
	RHOOPE TO ACIONERA N	RAB9311 AXXV8AON	HANBLICH HILL YPO BEHL ALAO XDAA	NEPBAR NOABHXKA	HAHBЫСШЫЙ ЗРОВЕНЬ ЛЕДОХОДА	ПЕРВАЯ ПОДВИЖКА	HAUBЫCШИЙ POSEHЬ	первая Подвижка	HAUB HC WHY	R E E E E E E E E E E E E E E E E E E E	MANGERDAN POBEHG AEVOVOVV	ПЕРВАЯ ПОДВИЖКА	HAUBЫСШИ! 4 РОВЕНЬ 14 РОХОДА
	8	226	206	249	229	286	267	292	272	325	305	438	418
	10,5	258	226	281	248	318	286	324	292	357	324	470	437
6, 5	11,0	265	229	287	252	32.5	289	331	295	363	328	476	441
•, •	12,0	278	- 237	300	260	338	297	344	303	376	336	483	449
	14,0	306	253	326	275	364	313	369	319	402	351	515	464
	16,0	334	268	354	291	389	328	395	334	428	367	541	480
8	8	258	238	283	263	331	312	339	319	377	357	528	508
	10,5	290	258	315	282	363	331	371	333	409	376	560	527
	11,0	297	261	321	286	370	334	378	342	415	380	566	531
O	12,0	310	269	334	294	383	342	391	350	428	388	579	539
	14,0	338	285	360	309	409	358	416	366	454	403	605	554
	16,0	366	300	388	325	434	373	442	381	480	419	631	570
	8	295	275	316	296	377	357	376	356	418	398	569	549
	10,5	327	295	348	315	409	377	408	376	450	417	601	568_
10	11,0	334	298	354	319	416	380	415	379	456	421	607	572
	12,0	347	306	367	327	429	388	428	387	469	429	620	580
	16,0	375 403	322	393	342	454	404	453	403	495	444	646	595
	8		337	419	358	480	419	479	1 418	521	460	672	611
	10,5	318	298	341	321	401	382	406	386	452	432	611	591
11,5	11,0	350	318	373	340	433	401	438	406	484	451	643	610
11,0	12,0	357 370	321	379	344	440	404	445.	409	490	455	649	614
	14,0	398	3 29	392	352	453	412	458	417	503	463	662	622
	16,0		345	418	367	479	428	483	433	529	478	691	637
All property and the second	1010	1170	360	446	383	ji 504	443	509	448	55 <i>5</i>	494	714	653

YPOBEH6 NELOXOLA LONKEH 56176 DEPAHUHEH HH3OM PHTENA. PACHETHOLE UCHAUR ARHOI ANA CEHEHUU B YPOBHE MOLDWELL LEATENGHOLD CAOR.

ИНВ И ПОВАЛ ПОВПИСЬ Н ДАТА ВЗВИ VHS. И 28492-М

SOLDON KINDAOTOTOS OLOVOLON MALONO

3 1			 	-		
			 Промежуточные опоры	CTAAUA	MACCA	MACUTAG
TA. CREY ONE	Постовой Ивянский		ΡΟΟ ΨΕΤΗΝΙΏ ΛΟΟ Τ ΡΟΟ ΕΙΝΑΙΡΟΝΙΑ ΚΑΙ Ο ΓΙΟΛ δ ΑΒΥΛΟΤΟΛΙΘΌΤΟΥ ΚΑΙ Ο ΠΡΟΙ ΒΟ 34 ΕΙΝ	Р		
1. И.П.		Kyz	CTBULL NELLOXDAA	AUGT	4 6	UCTOR
РУК. БРИГ.	Keonn	Milia				
	Кузнецов			COK	73AOPI	rpoekt
PAS PASOT	AHUXEM	llys			r. MO	CKBQ
		. ,				

DACUETHINE	YCHAUR	HATCTOAR	ТРЕХСТОЛБЧОТЫХ	опор
THO 4E I HOLE	i C MILLIA	INTO OVA	I F C V C I D) I D AV I D) V	

					TIPH OC	НОВНО				130K				T			<u> </u>	M	
٢,	Высота_ опоры от		<u> </u>		P.	<u>. </u>		2		١		<u> </u>			24			33	1
b	уровня. В вымым	,	12			15			18	1.		2 1						M	
Pu 7	M	Z	M		2	M	1-1	7	M	П	7	M	H	1	M	H-	17	9	0
	6	130	7:	0	139	7	0	164	6	0	168	6	0	191	5	0	271		
6.5	8	133	7	0	142	-7	0	167	6	0	171	6	0	194	5	0	274	9	0
6.5	10	136	7	0	145	7	0	170	6	0	174	6	0	197	5	0	277	9	0
	14	141	7	0	150	7	0	175	6	0	179	6	0	202	5	0	282	9	0
	6	150	7	0	165	7	0	198	6	0	205	6	0	234	5	0	348	9	0:
Q	8	153	7	0	168	7	0	201	6	0	208	6	0	237	5	0	351	9	0
0	10	156	7	0	171	7	0	204	6	0	211	6	0	240	5	0	354	9	0
	14	161	7	0	176	7	0	209	6	0	216	6	0	245	5	0	359	9	0
	6	183	11	0.	192	9	0	230	8	0	233	8	0	262	7	0	371	-11	0
	8	186	11	0	195	9	0.	233	8	0	236	8	0	265	7	0	374		0
10	10	189	11	0	198	9	0	236	8	0	239	8	0	268	7	0	377	-11	0
٠.	-14	194	11	0	203	9	0	241	8	0	244	8	0	273	7	0.	382	11	0
٠	6	201	11	0	211	9	0	253	8	0	257	8	0	291	7	0	406	-11	0
115	8	204	11	0	214	9	0	256	8 .	0	260	8	0	294	7	. 0	409	-11	0
11.5	10	207	11	Ö	217	9	0	259	8	0	263	8	0	297	7	0	412	11	0
	14	212	11	0	222	9	0	264	8	0	268	8	0	302	7	0	417	11	0

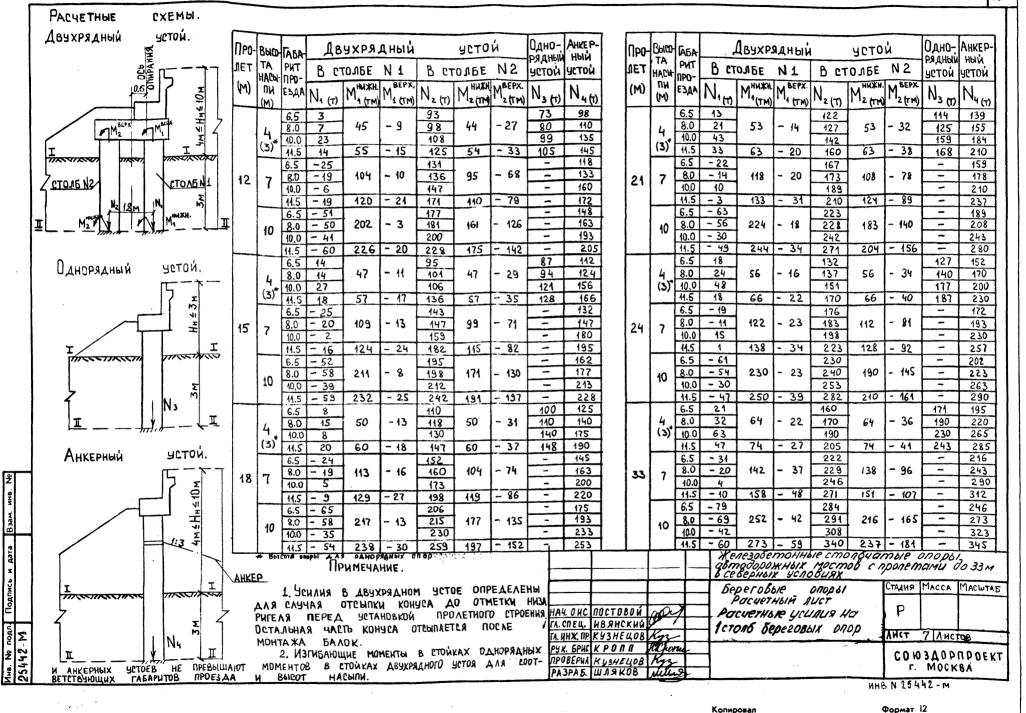
Расчетные усилия вес двух пролетных строений, временной нагрузкой загружени зво пролета с толой на одном тротупре для сечений в уровне подошью деятельного слоя

	ЖЕЛЕЗОБЕТОННЫЕ СТОЛЬЧА МО ХІННЖОЧОДОТВА	остов.
	Промежуточные опоры	C10942 MOCKIOS
HOY. OUC MOCTO BON OND	POCLETHEIR YCUNUS HO 1 CTOSE	
THIT KY3 HOUGE Kons	PEXCIONEY TOLK ONOP NOU OCHOBROM COLETANU HARRY-	AUCT 5 AUCTO8
Русория Кропп Мусока Проверия Кузнецов Ку		Corossophpoext.
Paspossian CMOICADBA Colou		P. MOCKED

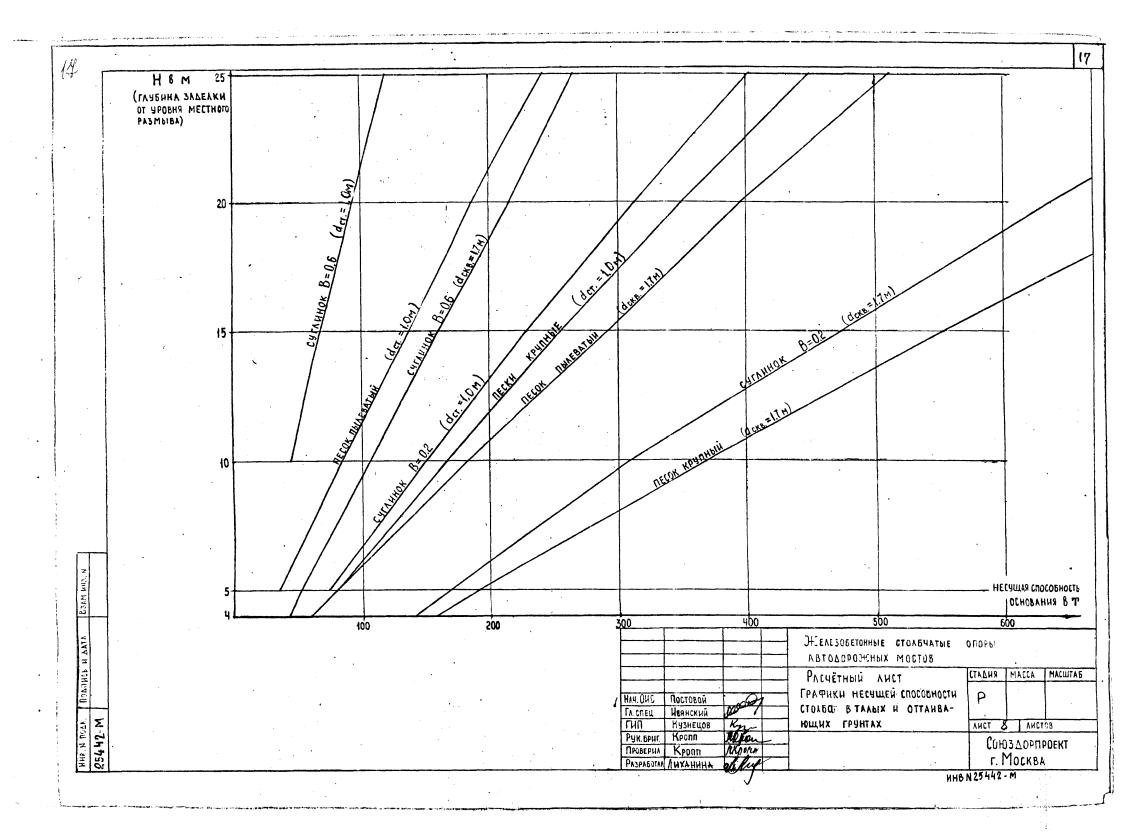
инв N 25442 - м

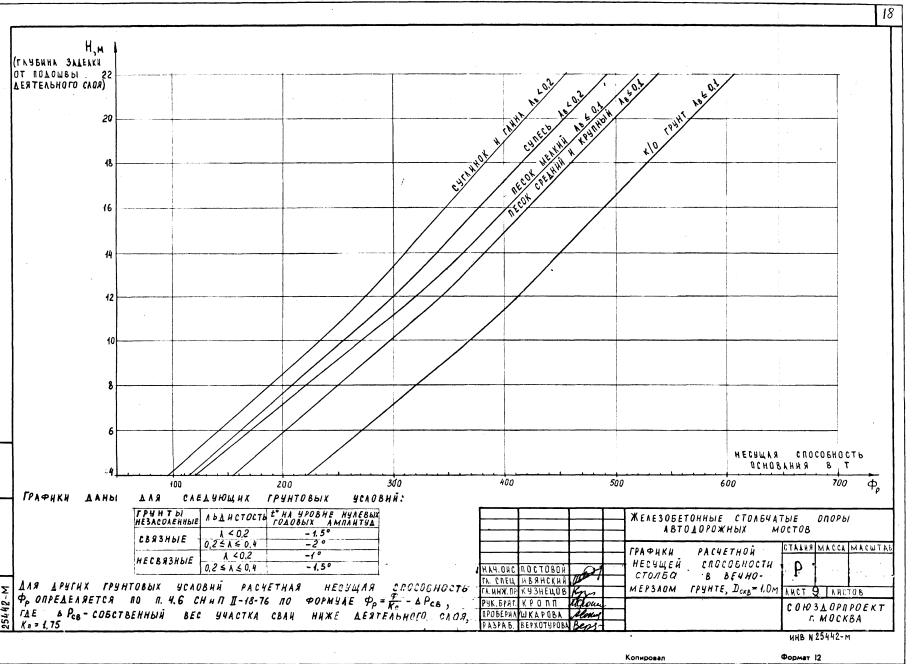
P	ACHET	HOE YOU	INUE H	<u>а 1 ст</u>) A B T	PEXCTO	<u> </u>	9000	при	воздей с	TBUU A	<u>ЕД 0 х ОДА</u>	, T
TA 5 A-	BUCOTA	П		P	0	λ		E	Τ	Ь	1		
PHT	VEYOY3Y	1	2	1.5		1	8	2		2	•		3
	RHBOOK TO ASUM E AC M	ПЕРВАЯ ПОДВИЖКА	НАИВЫСШИЙ УРОВЕНЬ ЛЕДОХОДА	ПЕРВАЯ ПОДВИЖКА	HANBLICHUU YPOBEHL AEAOXOAA	ПЕРВАЯ ПОДВИЖКА	йишэнейнан Зровень Адохода	ПЕРВАЯ ПОДВИЖКА	HANBACUMU YPOBEHL AEAOXOAA	ПЕРВАЯ Подвижка	HAUBSICMUL JPOBEHS AFAOXOAA	NEPBAR NOLBUXKA	HAU BLICWHU YPOBE HL AEAOXDAA
	8	205	183	216	257	244	222	250	228	275	254	363	341
	10,5	227	197	301	270	266	235	272	242	298	267	385	354
6,5	11,0	232	200	244	211	271	238	277	245	303	270	390	357
0, 0	12,0	243	206	254	217	282	245	288	251	313	276	400	363
	14,0	267	219	277	231	304	258	310	264	336	290	423	377
	16,0	291	232	310	244	325	271	332	277	357	303	444	390
	8	225	203	242	221	278	256	287	265	318	297	440	418
8	10,5	247	217	265	234	300	269	309	279	341	310	462	431
	11.0	252	220	270	237	305	272	314	282	346	313	467	434
0	12,0	263	226	280	243	316	279	325	288	356	319	477	440
	14,0	287	239	303	257	338	292	347	301	379	333	500	454
	16,0	311	252	336	270	359	305	369	314	400	346	521	467
	8	258	236	269	248	310	288	315	293	346	325	463	441
	10,5	280	250	292	261	332	301	337	307	369	338	485	454
10	11,0	285	253	297	264	337	304	342	310	374	341	490	457
1	12,0	296	259	307	270	348	311	353	316	384	347	500	463
	14,0	320	272	330	284	370	324	375	329	407	361	523	477
	16,0	344	285	363	297	391	337	397	342	428	374	544	490
	8	276	236	288	267	333	311	339	317	383	361	498	476
	10,5	298	268	311	280	355	324	361	331	405	374	520	489
11,5	11.0	303	271	316	283	360	327	366	334	410	377	52 <i>5</i>	492
	12,0	314	277	326	289	371	334	377	340	420	383	535	498
	14,0	338	290	349	303	393	347	399	353	443	397	558	512
	16,0	362	30 3	382	316	414	360	421	366	464	410	579	525

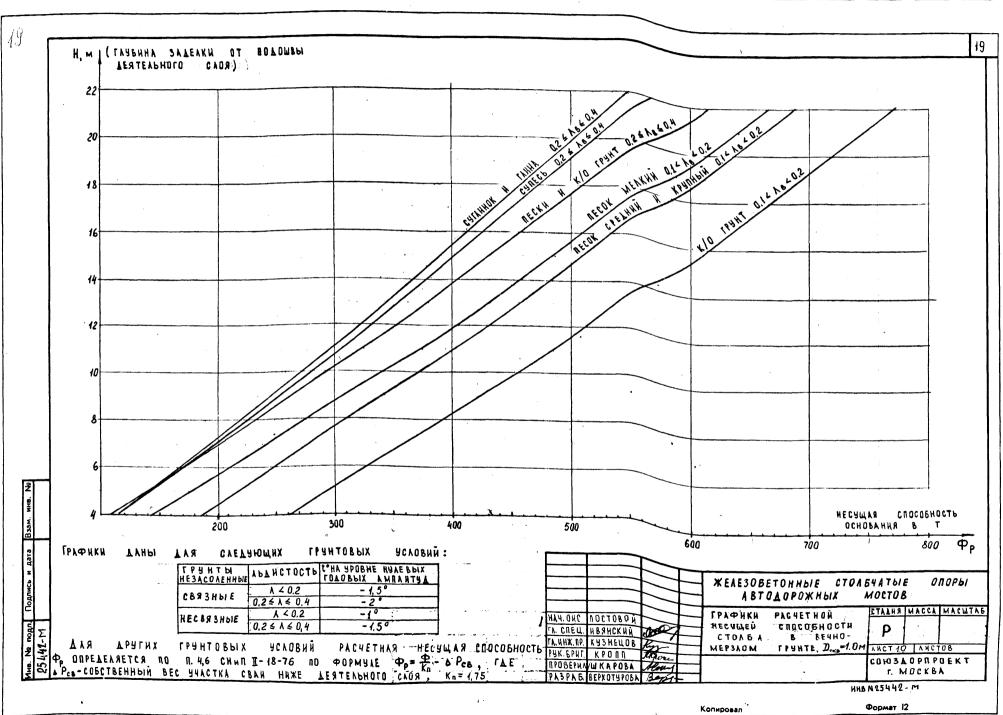
YPOBEHL · NELOXOLA A.OAXEH 56/Tb DEPAHULEH HUSOM PHIENA. PACHETHUR YCHAUR AAHU AAR CEYEHHH B YPDB HE MOLOWBU LERTENDHOLD CHOR.

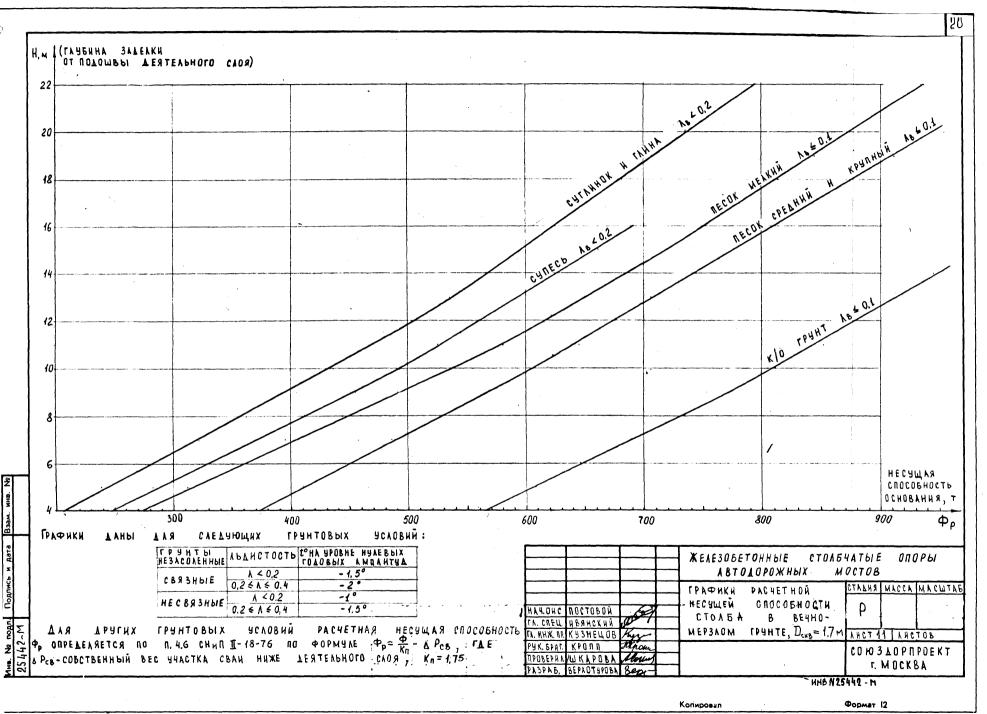

Железоветонные Столбчаты е Опоры автодорожных мостов

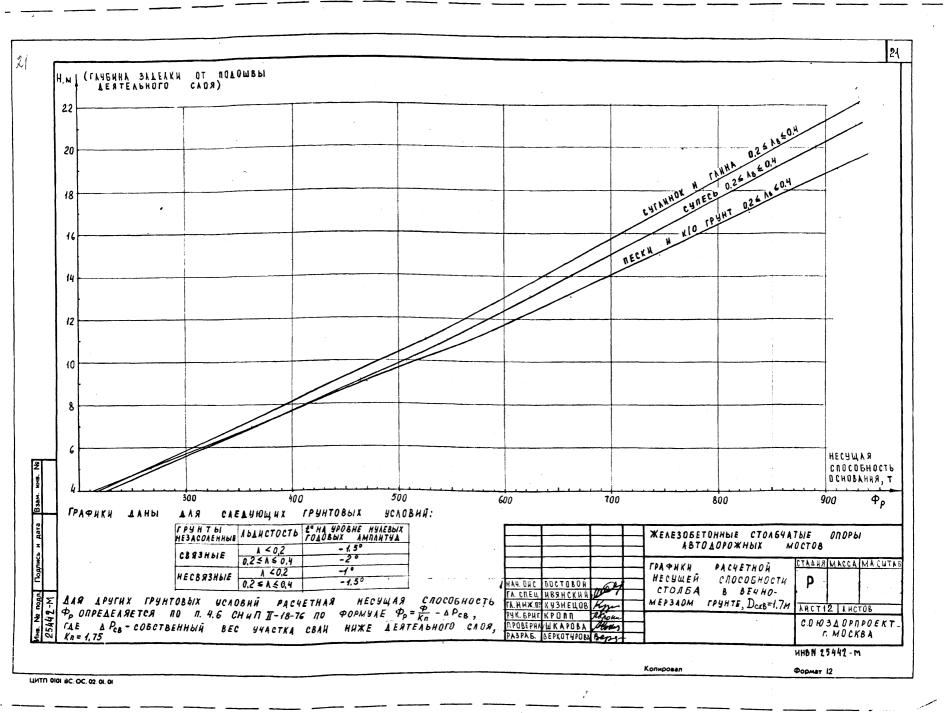
					977 7 11 to 70 to 10 to 10		
				ROOMESKYMOUHUE ONOPU	CTARUA	MACCA	MACUTAS
DHC	Постовой	.01		Pacyether young Hal CTONS	P		
. N.				TPEXCTONEYOTEN ONOP NOU BOSAEU		<u> </u>	
FPUT.	Ky3HE4OB Kponn	lleso	0	CTBUU NEAOXOAA	AUCT	6 1	THETOB
BEPHA	Кузнецов				COM	03,000	npoekt ck6q
PABUL	AHNXEM	Myx			Í	r. M0	CK6Q

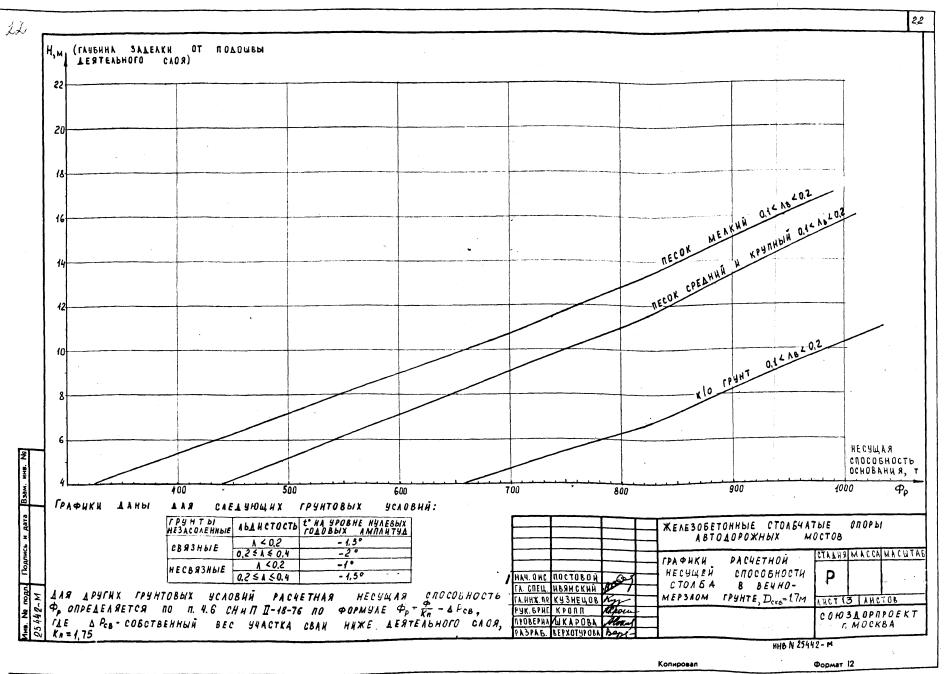

HHB N25442-M


15


25442-M 104,000 × 4274 334,048 N




ЦИТП 0107 BC. OC. 02. 01. 07



Ταδπυμα	нормативных	Вертикал	TOHEIX :	CUN (T)
	ющих на 1 стол			
в уровн	P MECITHORO P	размыва. (П	оомеж ут	OYHbie
DICPOJ; C	AAUHA ONUN LI	06 0,8M)	ne 6	

BOICOMA ONG OM SPOSNA MECMHOLO PASNA BE O BEPTA PUREM	<i>r</i> . <i>s</i>	ANUMA ONUPER MUTCE NOD- ACTION, M	40000	εποπόσβ	6 oncre
e do bepsa puesas	ravapum	AEMOB, M	/	2 .	3
		12	142	74	49
		15	172	82	58
	6,5 +2×1,0	18	214	108	72
		21		123	82
		24		139	93
	1.1	33		204	138
		12	166	85	57
		15	198	101	.67
•	8+2×1.0(1.5)	18		126	84
i .		21	_	144	96
		24		162	108
5 M*)	· .	33		240	163
		12	_	99	66
		15		119	79
	10+2×1.0(1,5)			149	99
		21	_	170	113
		24		191	127
		33		284	192
		12	-	107	71
		15		127	85
	11.5+2×1,0(1.5)	18	-	159	106
	'	21	_	181	121
		24	_	204	138
		33		301	203

Ταδπυμα сил морозного пучения, действующих на 1 столь (т)

5	Глубина сез отта и ван	UR, M	MEP3QHUA
Грунты и степень водонасыщения.	1	2	3
Глинисть при показателе консистенции 1, >0,5, пески мелкие и пылеватые при степени влажности G>0,95	33	55	68
Глинистые при $0.25 < I_2 \le 60.5$, пески мелкие и пыле- ватые при $0.8 < G \le 0.95$ Крупнообломочные с запол- нителем (глинистым, мелко- песчаным и пылеватым) более 30 %.	25	45	53
Глинистые при [, 2025, пески мелкие и пыпеватые при 0,6 ± G = 0,8, а также крупно-обломочные с заполнителем (глинистым, мелкопесчаным, и пыпеватым) от 10 ½ до 30 ½	20	35	38

морозное пучение

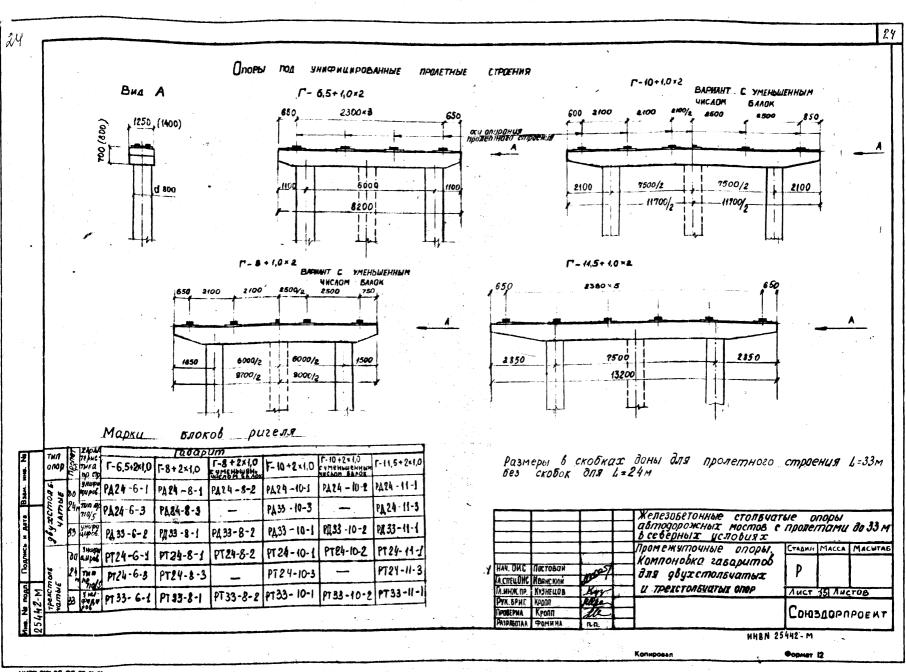
	1	1 00	.1	307	203	1
	bicome	000001 0	n ypobl	AS MEC	M 3HQYE	Oasmbila
	מח 'סמטי	ע סט שווארו	76 1267	HQ	M SHUYE KQXX DDIÜ	POZ. M
yBENU4E	HUA BE 1240HUE L	NCONTOI Teperobole D	0000061. 110061 30000	ектировани	of des uver	CUA MOPO3-
H020 1	nyuenua, ma	K FAK JAU	LULLEHBI OF I	последнего	дрени рующ	eu saceinkou

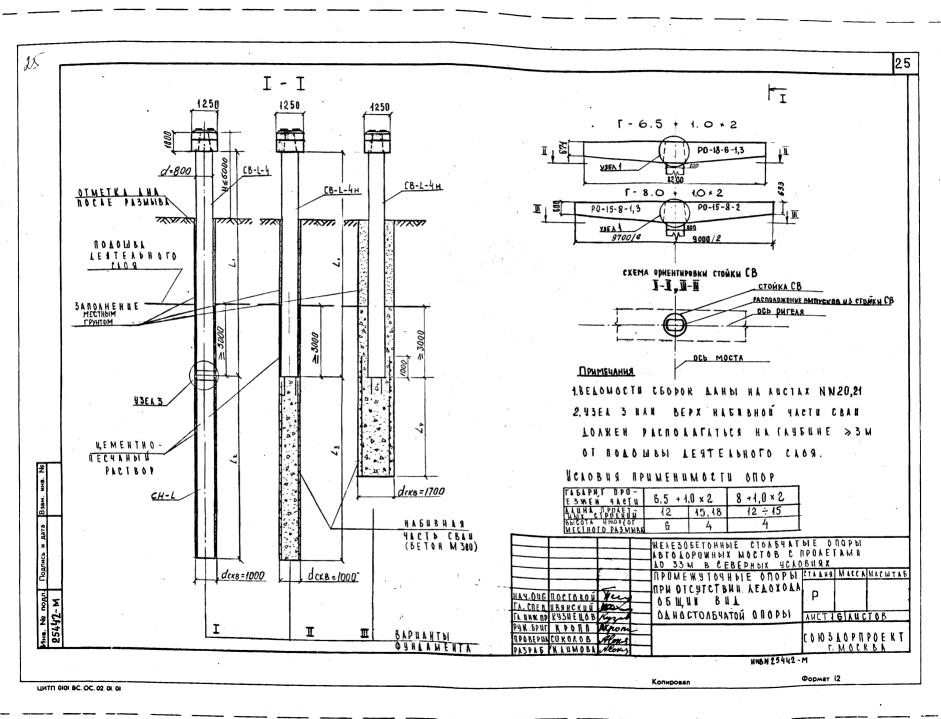
Hay DIK Noc mobou

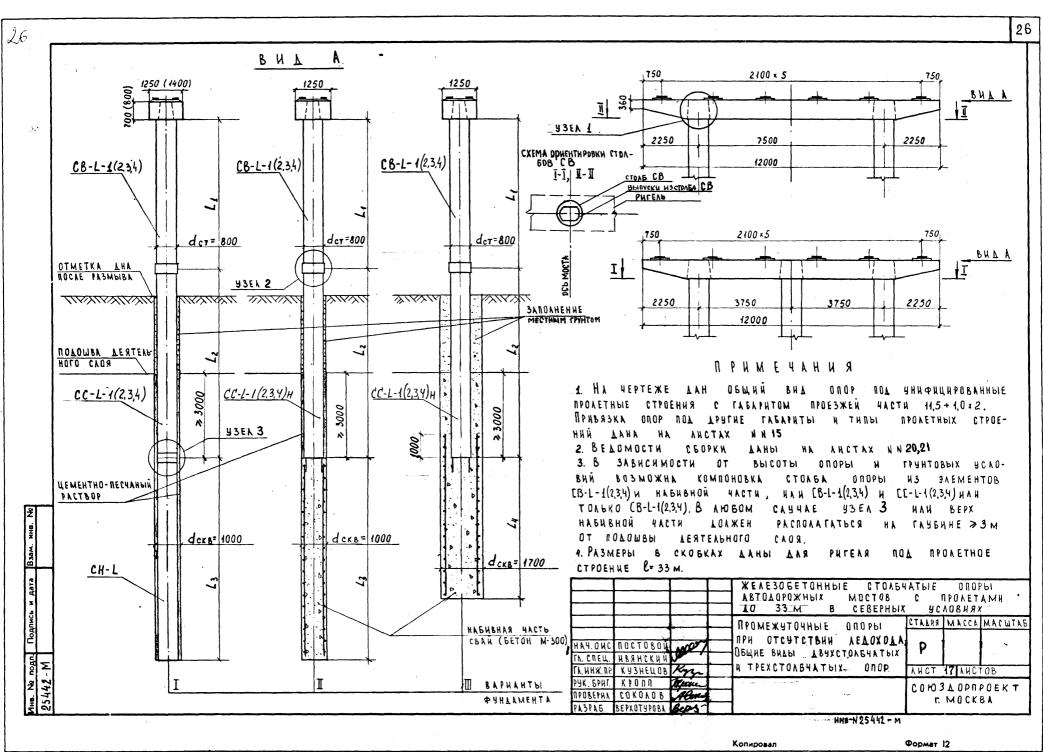
[a.cney, Hbanckuu]

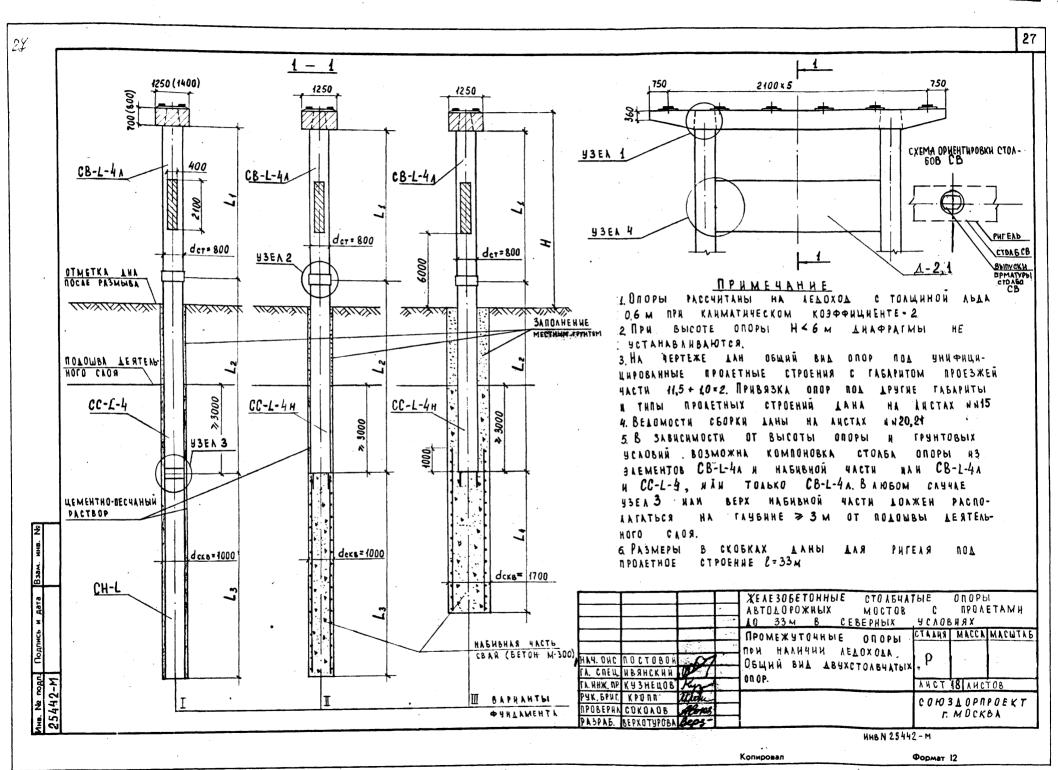
[ha one Kisheuob Kare

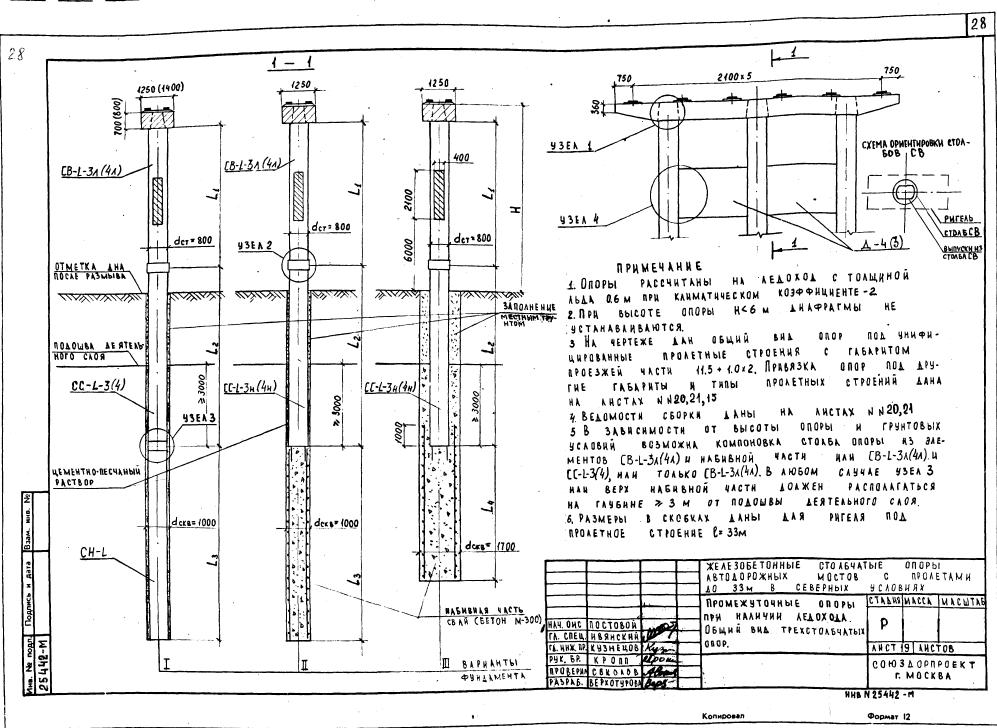
[ka bue, Kenn


[hob. Kysheuob Kare


[aspob, Kneumab, up


железобетонные столбиатые опоры автодорожных мостов Стадия масса масшт Расчетный лист Προβέρκα στολδοδ μα Aucm14 Aucmob


CONO3 DO PRODEKT 2. Mockba


HH8 25442 - M

BETOWOCLP CLOBKH ULOWERALOAHPIX OLOD (BALEYN)

ANHA U TUN 1 PAAFT U LIV	TABADUT			ПИТ	ОПОРЫ			•		
ЛИНА И ТИП 1 РОЛЕТНЫХ СТРОЕНЦЙ	NPOEZWEŃ	0 T D O H A O	LEVATA	9	A B 9 X C T O A B V A T A A MAPRA BAOKA ROBUNGETBO BAO-NAUCTA NPOEKU			TPEXCIOAEYATA9		
HUPULUPO-	1	P018-6-1	OB NA ORODY	47	PA24-6-1	OB HA GROPY	52	PT 24 - 6 - 1	KOB HA OROPY	64
BAHHЫE PERPUCTЫE	8 + 1,0 x 2	P0 15 -8-1 P0 15 -8-2	4	48	PA24-8-1 PA24-8-2	4	<u>53</u> 54	PT 24 - 8 - 1 PT 24 - 8 - 2	4	65
L ≤ 24 м L≤18м для одно стольчатых)	10 + 1,0 × 2				PA24-10-1 PA24-10-2	1	<u>55</u> 55	PT 24-10-1 PT 24-10-2	1	<u>67</u>
	11,5 + 4,0 × 2		- -		PA24-11 -1	1	56	PT 24 -11 -1	1	68
ни оп циро	6,5 + 4,0 × 2				P. 33 - 6-1	4		ÞT 33-6-1	4	70
BAHH	8 + 1,0 x 2				PA 33-8-1	1	<u>59</u>	PT 33-8-4 PT 33-8-2	4	71 72
L = 33 w	10 + 1,0 × 2	<u></u>			₽¥ 22-10-5 ₽¥ 23-10-1	1	61 62	PT 33-10-1 PT -33-10-2	-1	73 73
	11,5 + 1,0 x 2				P. 4. 53-11 -1	1	62	PT 33-11-1	1	74
PEBPHCTHE	6.5 + 1,0 × 2	PO 18 - 6 - 3	1	47 .	PA24-6-3	1	52	PT 24 -6-3	1	64
10 B b 1 1 7 105		P017 -8-3	- 1	·48	рД 24 - 8 - 3	1	53	PT 24-8-3	1	65
10 00111.1195	10 + 1,0 × 2				PA, 24 - 10 - 3	1	55	PT 24-10-3	1	67
	11,5+1,0 × 2				PA 24-14-3	1	56	PT 24-11-3	1	68

PHK. SPHI KPONN

RPOBEP CORONOB

RPHMEHLNUE:

B SHAMEHATERE - MAPRA BAORA PHIERR ПОТ ЯНИ ФИПИБОВЧИНЫЕ ИБЯТЕТНЫЕ CTPOEHUR LAR BADUAHTA C UMENDUENHUM ROAUTECTBOM SALOR B NOREPETHOM teuenuu.

-	 		ОПОРЫ
		ABTOLOPOWHDIX MOCTOB	

UDD MERALOGHE OUDD CLARAS WECKWEENLY HAM. DUC NOCTOBOR BELOMOCI & CEOPKH (PATEAH) TA. WHY DD PY3HELOB

ANCT 201 AUCTOB CO103 LOP 11 PO E,KT c MOCKBA HHBN25442-M

Копировал

Формат 12

LIPUL BADESMEN AUCTA T-6.5 +1.0 ×2 1-8+10x2

IN A ORO THE WARRE BELONOCTH CEOPKN HAM. OHE ROCTOBON TO A LANGE CIDAR RATARRADID

Mulu

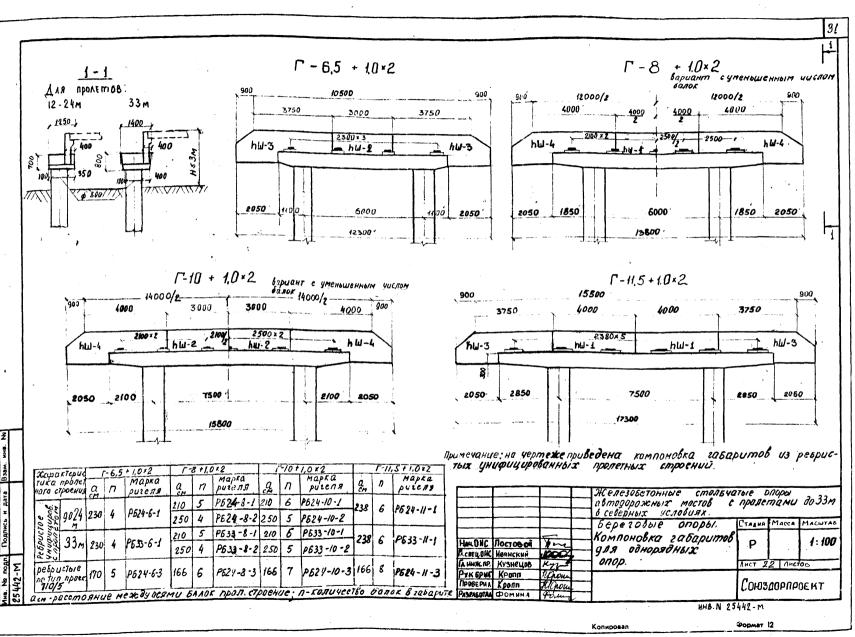
TA WHIN NP RY3HEUOB 152

DOOSED COPOLOB HORO PLAPAS RAUMOBA MOLO

PUR. SPUT RPONT

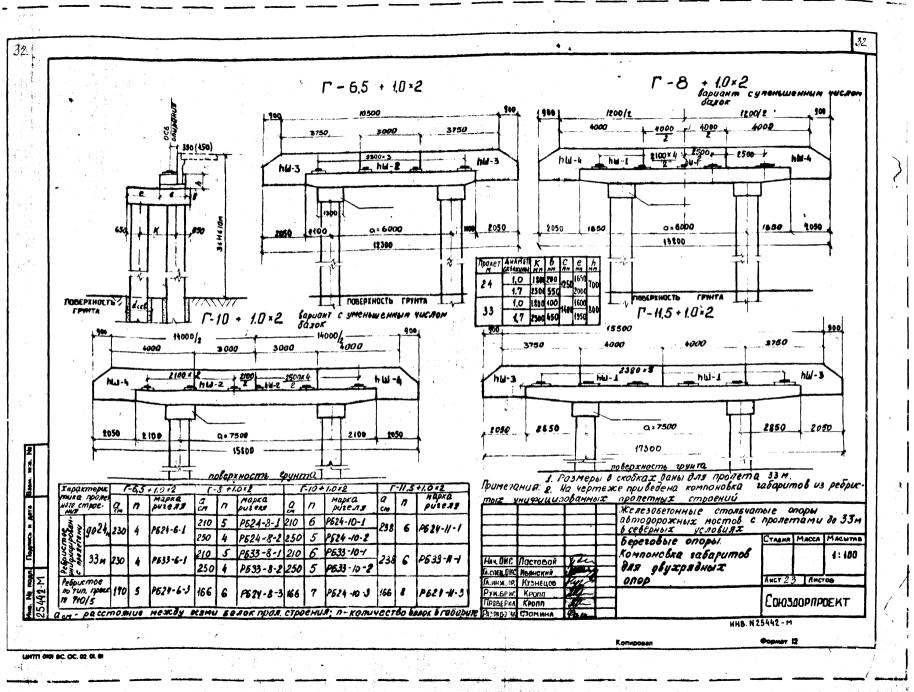
CO1031OP NPOEKT

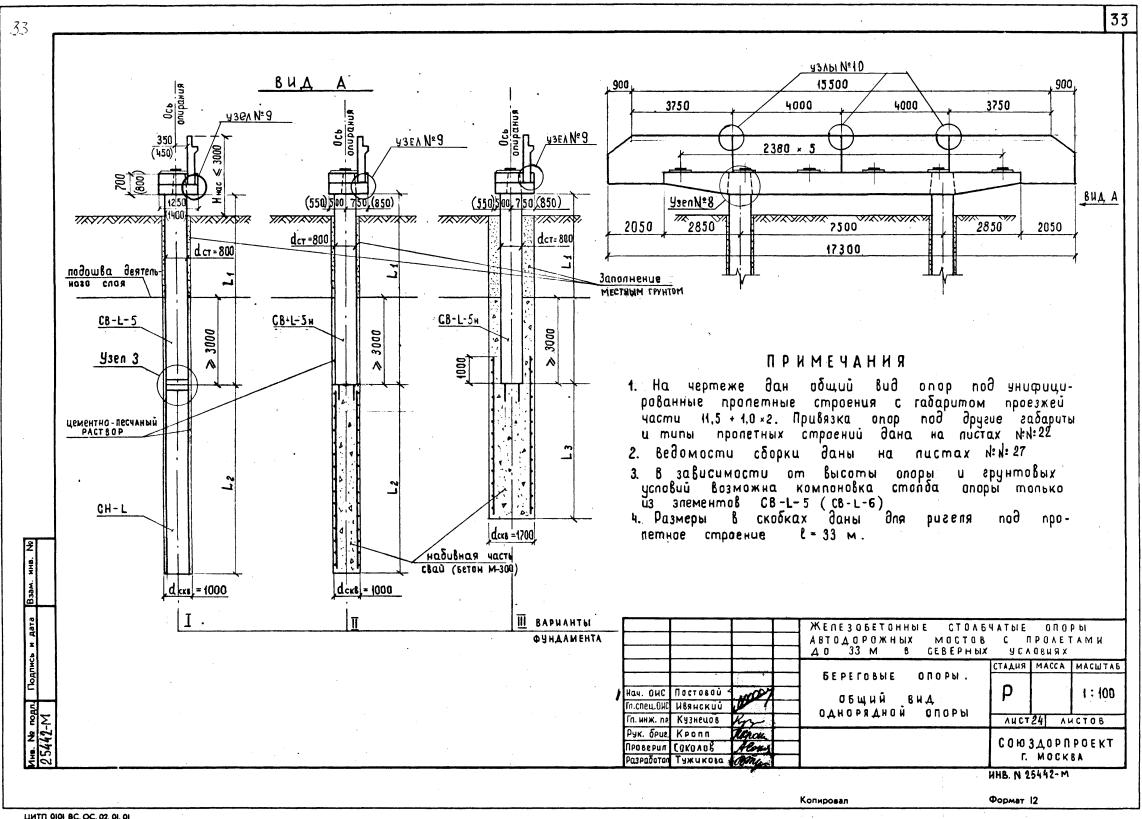
HHBN 25442 - M

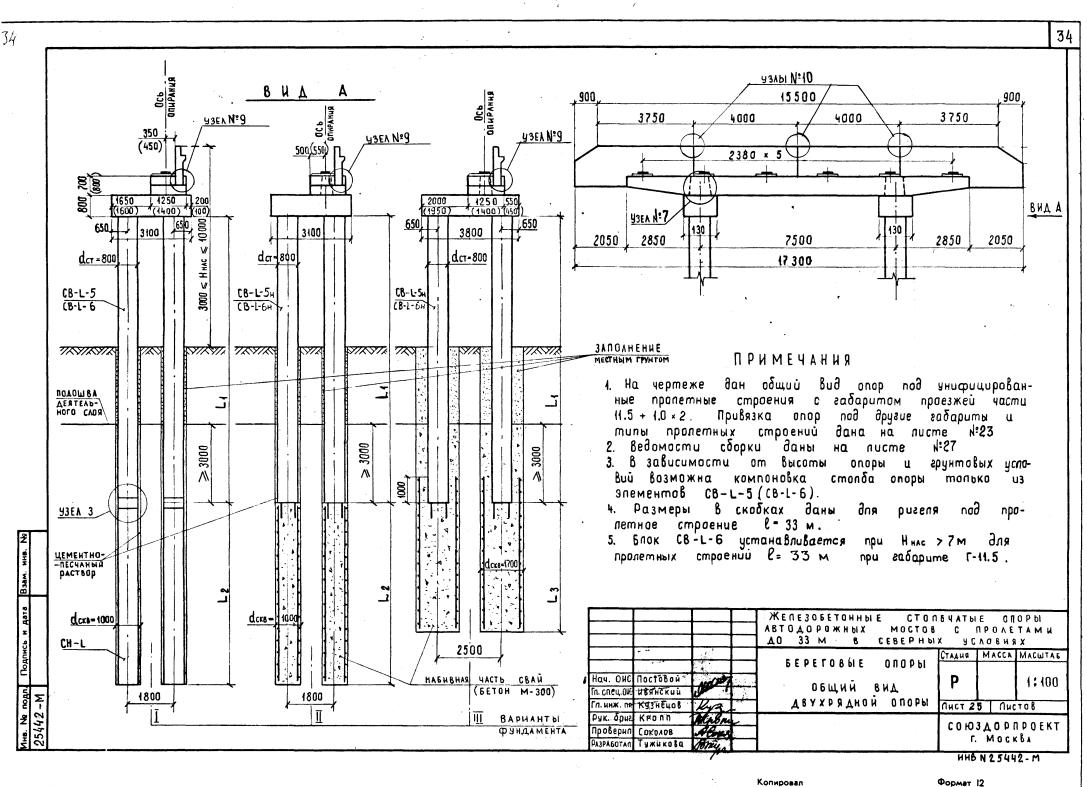

ANAPPATM DI 43ADI)

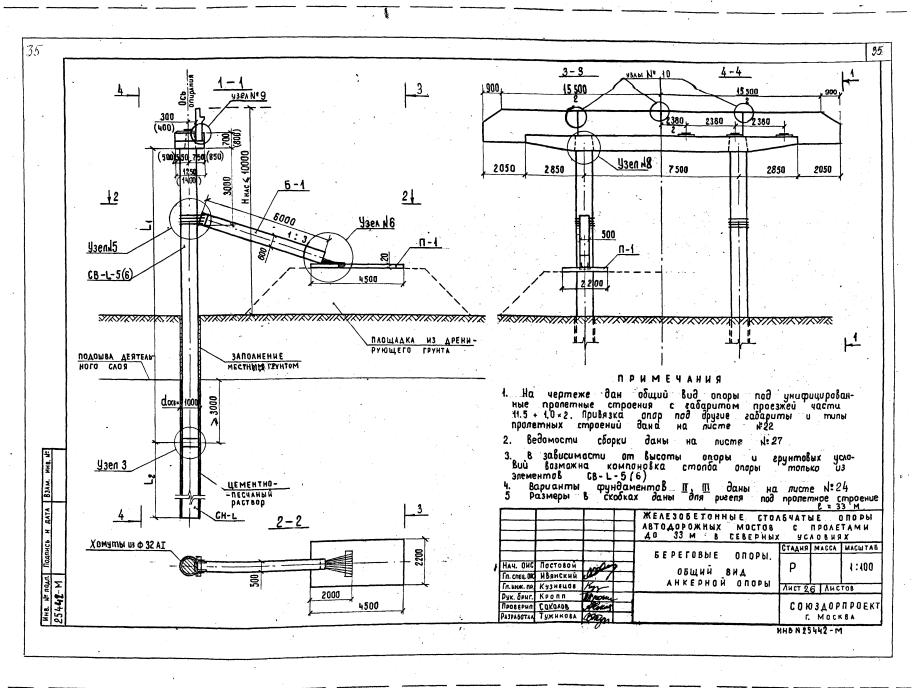
D

ANCTZI ANL TOB


Инв. Ne подл. Подлись и дата 25442-М


30




ЦИТП 0101 BC. OC. 02. 01. 01

31

I CTOABHATAR HACTE, 45Kbl

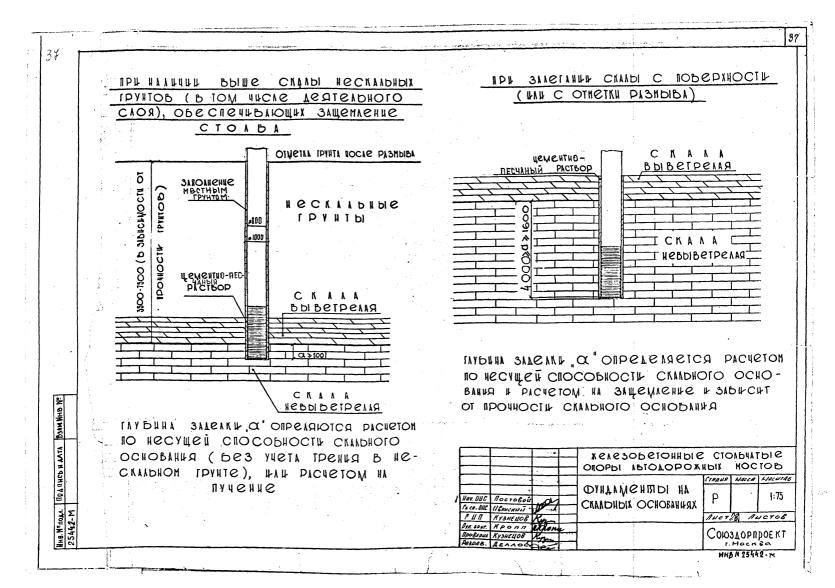
1410 0110 1111	TM II.		BEPXH M BbICO H & 8 m A A U III 12+21 24 F65+45 F65+8	TA H 1 U NPOA ÷33 [-10+11.5	6 A O K ACHINA 10 > H ETOB, M 12:21 21-33 F65:10 F65-8	>8 M 12÷21 24+33 F-11,5 F-10;11,5	Н Ч Ж Н И И Б В О К	HABUBHAR MACIA (BAB	AREF	THREPH DIN-	HATONOBHBR			93	Y PI			
PERONTO	T	MAPKA BLOKA		CB-L-6 2	- /cors	- /2	2		-/ n-1	-/B-1 -/2	=	Nº3		-/ NºG	-	N 8	Nº9	NSIO
HAR AH	1 -	NAUCTA TPOEKT		32	-/32	-/34	43		-/98	-/ 97		104	-/ 2 -/106	-/ 106		107	108	108
1 /		MAPRA BAORA		CB-L-6H	- /calsu	- /CB1-CH		_	-/ 11-1	-/B-1	_	-	-/ NºS	-/ Nº6	-	Nº8	N29	Nº10
KEPHAS	$\mathbb{I} - \mathbb{I}$	TKOA BO HA OTOPY	2	2	-/2	-/2		2	-/ 2	-/2		-	-/ 2	-/ 2		2	3aBucut or	
		NAUCTA RPOERTA	32	32	/33	/35		100,401	-/98	-/ 97	_	-	-/ 106	-/106	_	107	108	108
		MAPKA BAOKA	CB-L-5	CB-L-6	CB-L-6	CB-L-B	CH-L				H-1	Nº3	-	_	Nº7	_	NEB	Nº10
YBAX -	1 1	KOV BO HY OILOGA		4	4	4	4			1	2	_2	_		2	_	SOBUCUT OT	ro&sputa
PALHAR	ļ	NAUCIA DPOERTI		34	34	34	43		-	_	102	104	_	_	107	_	108	108
1	Tr 7	MAPRA BAOKA	CB-L-5H	CB-F-BA	CB-L-6H	CB-L-6H		-	l		H-1 (H-2)	-	_		Nº7		Nº9	NEIO
1	111-1	T KOL BO HA OHOP		14_	<u> </u>			4	1	1	2	•	_	_	2		Sabucut o	т габарита
L	1	HANCIA DPOEKTI	33	35	35	35		100,101	<u> </u>	L	102		_	_	107	-	108	108

I PHEEN , WRAPHAR CIEHRA

BYEWEHL	ARRA H THR	TABAPHT.				BLEMENT			KPAÚHU	N BLOK		CPEA	HUE BA	O R
	NPOREI HOLL CIPE	TALIN	T D V O K W	HA DRO'PB	N AUCTA RPDERTA	04011	NPOLETH DIX CTPOEH U U	RPDESWEH 4 L L T N		KONNAECT BO	N ANCTA N DERTA	MAPKA	KORUYECT BO	N AUSTA DPOERTA
	чифицировін.	6.5 -1.0 12	PE24-6-1	- !	76 77			65+1.0=2	90m-31	2	88	98W-5	1	87
BAOKN	HOLE PERPUC-	10 +10×5	PE24101/52410		78		12÷15m	10 + 1'0 x 5 x + 1'0 x 5		2	88 88	90 w - 1	2	<u>87</u> 87
	HHP NH NPOBAL				. 65 . 68	BAORN	u	11.5 + 1.0 × 2 6.5 + 1.0 × 2		2	88	90W-1	2	87 90
	HUE PEBPUC-				84 82	МКТФНО Й	18÷24m	8+1,0×2	1206-41	2	91	12011-1	i	90
		11.5+1.0 2	P633-11-1	4	83	CTEHKA	1	10 + 1.0 × 2		2 2	91	12:1:11-2 12011-1	2 2	90
	PEBPUCTHE		P 5 24 - 11 - 3 P 5 24 - 8 - 3		76 77			6.5 +1.0 - 2	(70 td - 3 %	2	95	17014-2	<u> </u>	9 <i>5</i> 34
•	10 B bin. 740/5	10+10+2	P524-40-3	1	78	1	33M	8+1,0×2		2	95 95	170W-1	2	95
	I	111.1.1.1.1.6	1 1 24-11-3		79	L		11,5 +1,0 +2	170W-31	2	95	170W-1	2	94

RPUMEYAHDE:

A B SHAMEHATERE MAPKA BAOKA PHIEAR NOA YHUPHNUPO-BAHHBIE NPOAETHME CIPOENUM AAR BAPHAHIA C YMEHB WEHHBIM ROAHMECIBOM BAAOK B NONEPEHROM CEMERUM MANOUCNOCTOBOI


2 BAOR C HHIERCOM "H" (120M-1H) SEPKILLHO ROTOREH
EYORA C HHVEKCOM "L" (150M-11)

_	 MERE30 BETOHHME CLOVE ATPRE	1490110
	ABTOLOPOWHЫХ MOCTOB	
_		

PEPELOBPIE OUODPI BELOMOCTE CEOPRE COHOSLOPHPOERT

HHBN 25442 - M

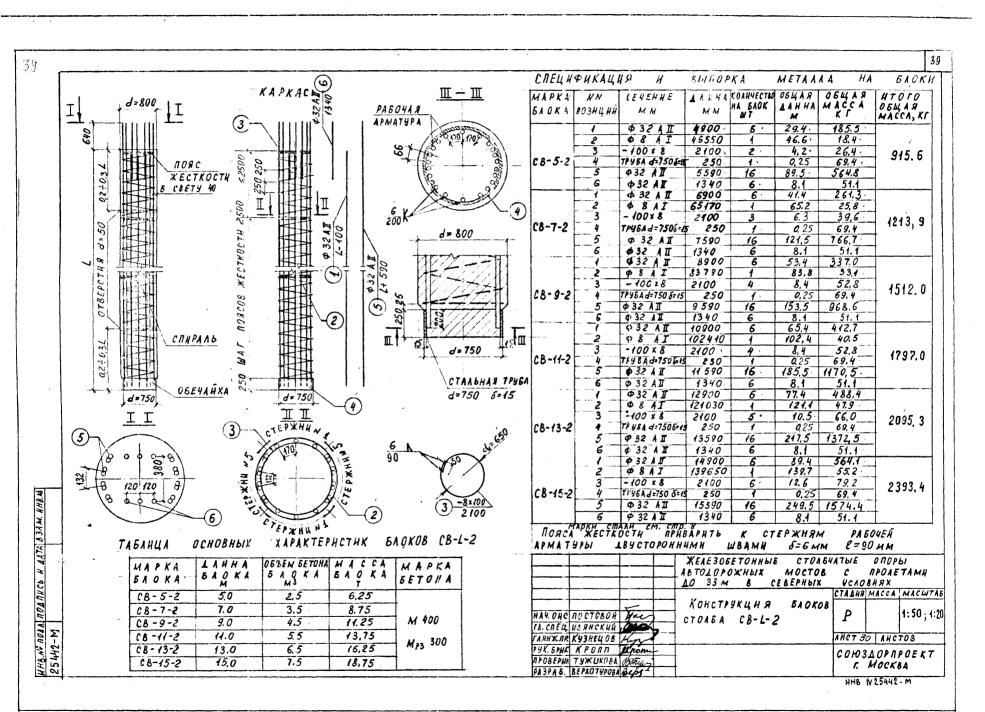
Формат 12

TT - TT

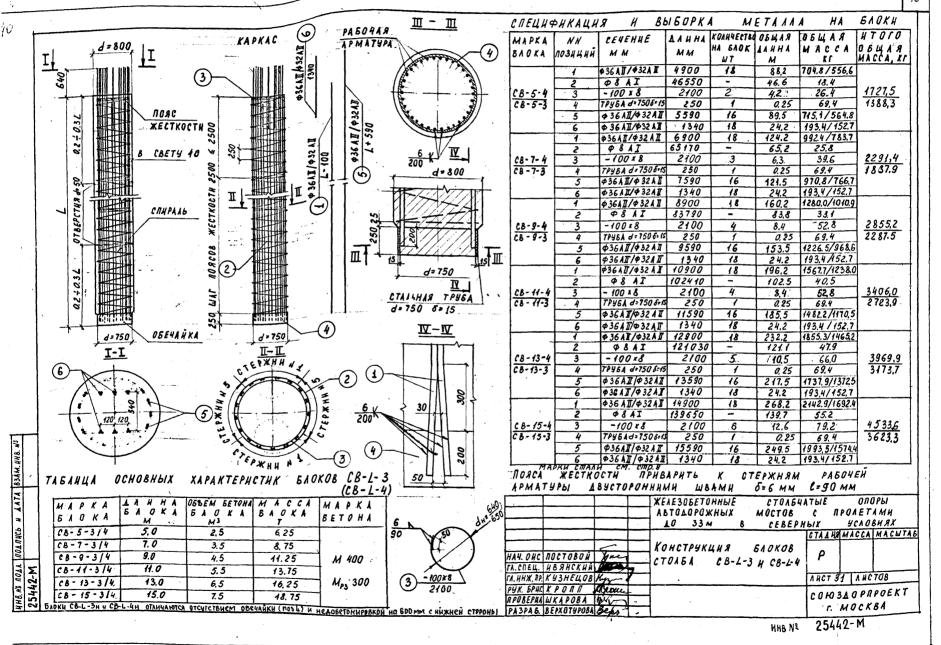
KAPKAC 6

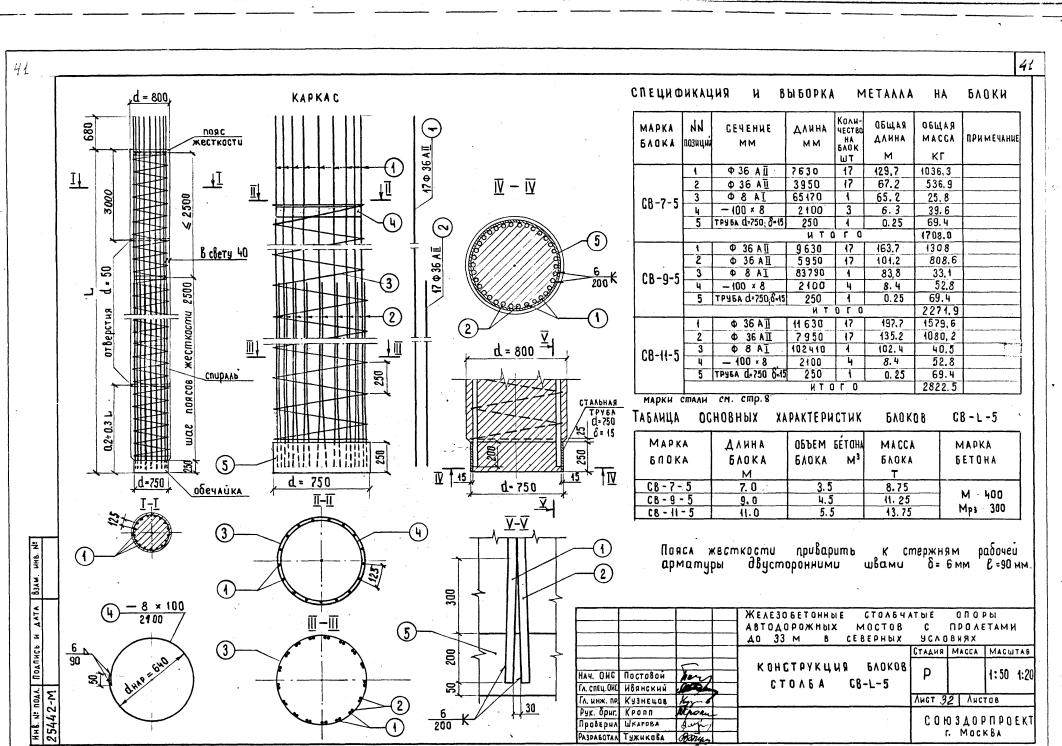
1= 10

СПЕЦИФИКАЦИЯ

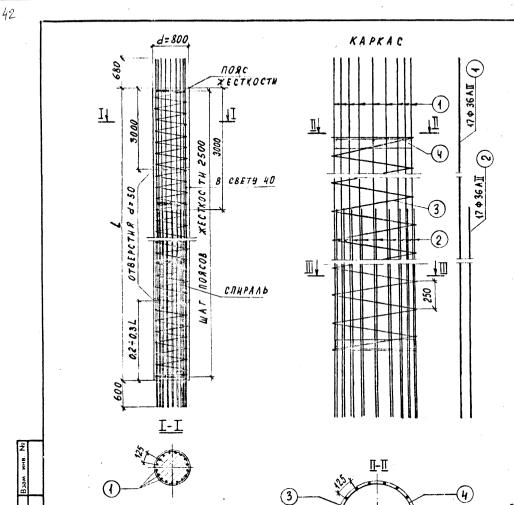

И

B b i b a p k A


METANNA


HA

38



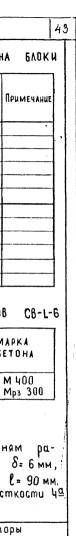
NHBN . 25442-M

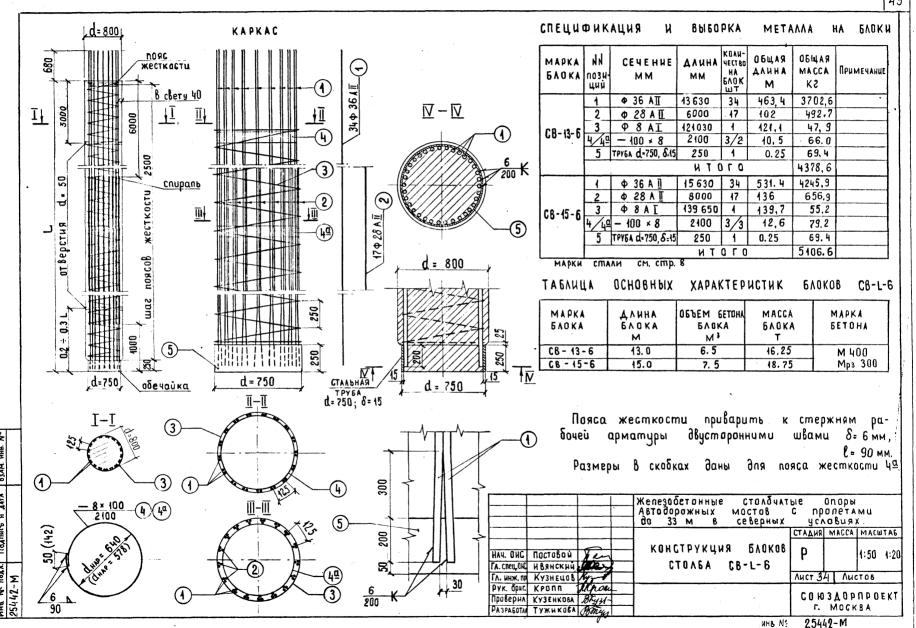
СПЕЦИФИК	ALLUR	И	BUSOPKA	METAAAA	HA	510K4

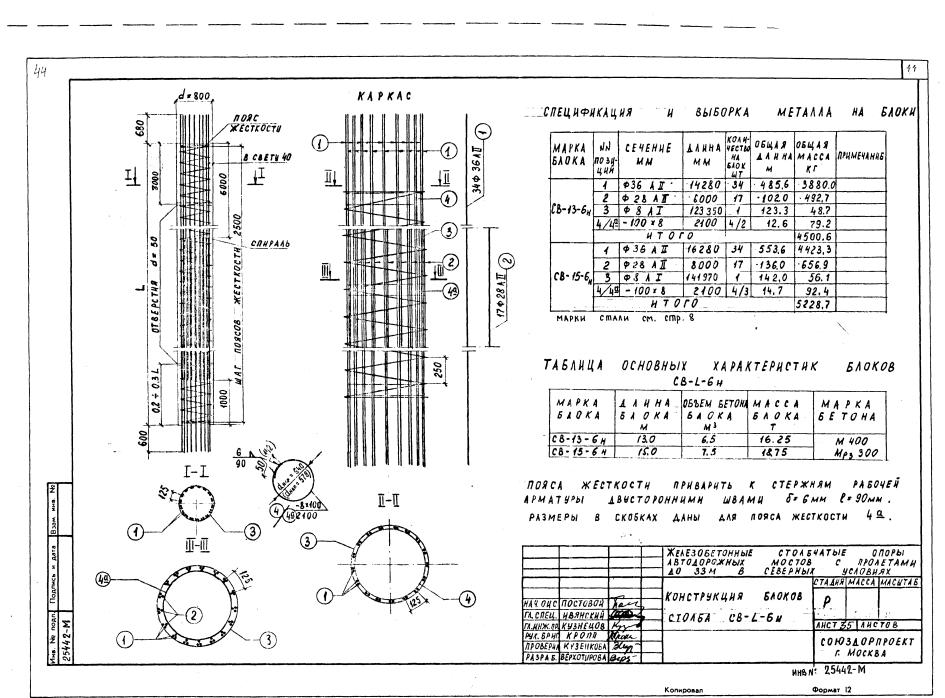
M A PK A 5 A O K A	N N 103444i	<i>CE4EH#E</i> MM	A A H H A M M	KOAH- TECTBO HA BAOK W T	05ЩАЯ Дайна М	05ЩАЯ МАССА КГ	ПРИ МЕЧАНИ
	1	Ф 36 A II	- 8280	-17	140,8	1125.0	
	2	Ф 36 A 🛚	4600	47	78.2	-624.9	
CB-7-5H	- 3	Φ 8 A I	65 17 0	1	65.2	25.8	
	4	- 400 × 8	2100	4.	8.4	52.8	
			UTO	ro		1828.5	
	1	Φ 36 A 🛚	10280	17	174.8	1396,7	
	2	Ф 36 АП	6600	17	-112,2	896.5	
CB-9-5H	3	IA8 Φ	83790	1	83,8	33.1	
	4	-100 × 8	2100	5	10.5	66.0	
			HT	010		2392.1	
	1	Φ 36 A II	12280	17	208,8	1668,3	
	2	Ф 36 AII	8600	17	146.2	1168,2	
CB-11-5H	3	Φ 8 A I	102410	1	- 102.4	40.5	
	4	-100 × 8	2100	5	10.5	66.0	
			UT 0	10		2943.0	
MAPKH	CmA	AN CM. CT	пр. 8	1		1	ı

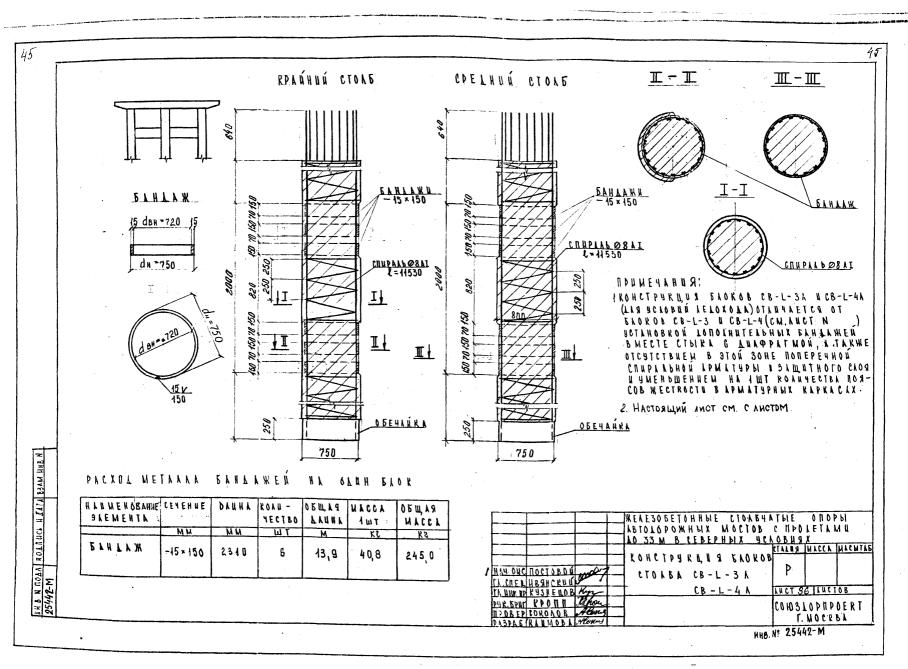
TABAHUA OCHOBHЫХ ХАРАКТЕРИСТИК БЛОКОВ CB-L-5 H

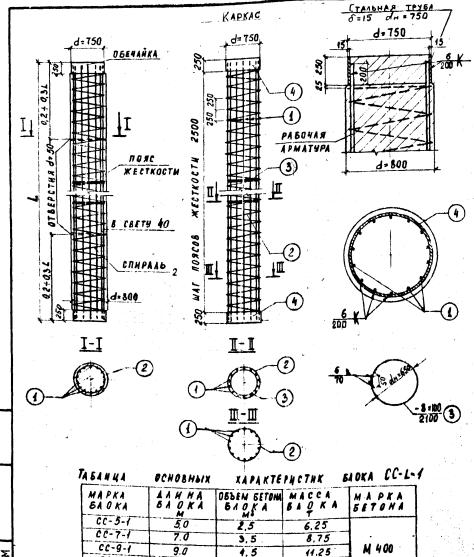
MAPKA	AHHAL	OBBEM BETOHA	MACCA	MAPKA
BAOKA	BAOKA	5 A O K A	BAOKA	BETOHA
CB-7-5H	7. 0	3.5	8.7 <i>5</i>	M - 400
CB-9-5H	9.0	4.5 5.5	11.25	Mr3 - 300


XECTKOCTU *TPHBAPHTЬ* K CTEPXHAM PABOYEN APMATERЫ ABECTOPOHHHMU WBAMU 5=6MM C-90MM


			KENE 306 TO 1 0 P 0 9 33 M	жных	٨	100708	Б4 АТЫЕ В С ЧСЛО	ОПОР ПРОЛЕ 1849 X	
		J,	· · · · · · · · · · · · · · · · · · ·		_			MACCA	MACUTAS
		┙′	Kohctpi	икци.	Я	BA OKO			
	Jours	_ ا c·	TOABA	CB-L	- 5 _H		P		
ГЛ. СПЕЦ. ИВЯНСКИЙ	- Cone		•		•				
илжинжи пр. К. Ч.З.Н.Е.Ц.О.В.	Kym						AHCTS	3 AHC	TOB
PYK. SPHE KPONN	Mon						COLO	SADPO	POEKT
RPOBEPHA KY3EHKOBA								Mock	
PA3PAG. BEPKOTHPOBA	Beps-								


MHBN: 25442-M Формат 12


Копировал


(3)

специ	PHKA U A	19 H B	W60PM	A M	IETAAA	A HA	610K
MAPKA BAOKA	N N ПОЗИЦИЙ	CEVEHUE M M	AANHA M M	KOAHYECTOL HA BAOK MT	064AR A H H A M	OBILA 9 MACCA RF	RPHME4AHUL
	7	# 32 AI	4900	14	68.6	432,9	
•	2	P 8 A I	46550		46.6	18.4	
CC-5-1	3	- 100 x 8	2100	1	2.1	13.2	
, 5 4	4	7746A d=7506=15	250	2	0.5	138,7	
			HTOFO		1	603,2	
	1	# 32 AT	6900	14	96.6	609.6	
	2	PBAI	65170	-	65.2	25,8	
CC-7-1	3	-100 x 8	2100	2	4,2	264	
1 -	4	TP46A d= 7508 115		2	0.5	138,7	
			HTOF			800.5	
	1	# 32 A I	8'900	14	124,6	786.3	
	2	\$ 8 AI	83790		83,8	33.1	
cc- 9-1	3	-100 x 8	2/00	3	6.3	39.6	
	4	TPYBA d=7508=15	250	2	0,5	138,7	
			4700			997.7	
	1	\$32 A I	10900	14	152.6	962,9	
	2	\$ 8 AI	102410		102.5	40.5	L
CC-11-1	3	-100 x 8	2/00	3	6.3	39.6	
	4	TP461 do 7508, 15		2	0.5	138,7	
			WTOrd			1981.7	
	1	4 32 A I	12900	14	180.6	1139.6	
	2	\$ 8 AI	121030		121.1	47.9	
CC- 13-1	3	-100 x 8	2100	4	8.4	52.8	
٠,	4	TPYBA d = 750,5=15	250	2	0.5	138.7	
			HTOF			1379.0	
		Ø32 / I	14900	14	208.6	1316.3	ļ
	- 2	PSAI	139650		139.7	55.2	ļ
CC- 15-1	3	-100 × 8	2100	5	10.5	66.0	
	1	TPY 6 A @ = 750,8 . K	250	2	0.5	138,7	
	<u> </u>	CM CMO. 8	HTOFO			1576.2	<u> </u>

MAPKH CMAAH CM. CMP.8

ROACA WECTKOCTH PHBAPHTS & CTEPWHAM PABOYEN APMATYPHI ABYCTOPOHHHMH WBAMN 5=6mm &-70mm

		ЖЕЛЕЗОБЕТОННЫЕ СТОЛБЧ ABTOLOPOЖНЫХ MOCTOB LO 33 M B СЕВЕРНЫХ	C 9 C A O	NPOAE BHRX	TAMN
НАЧ. ОЯС ПОСТОВОЙ ГЛ. СПЕЦ. ИВЯНСКИЙ ГЛ. НИЖЛЯ КУЗНЕЦОВ	1000	СТОЛБА СС-4-1	P	MACCA 7 AHC	MACWTAS
	Mipone Out		СОЮЗ		POEKT

NHBN: 25442-M

Копировал

Формат 12

CC-11-1

CC- 13-1

CC-15-1

11.0

13.0

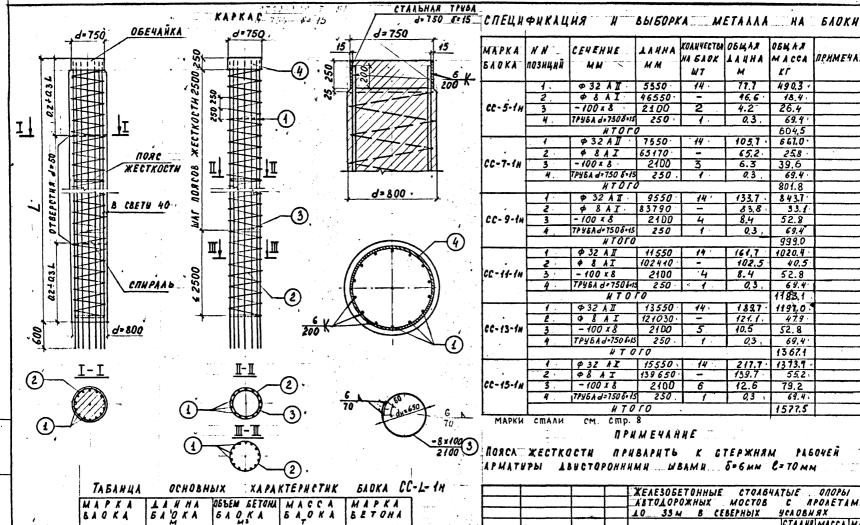
15.0

5,5

6,5

7.5

13.75


16.25

18.75

Mp3 300

16

2.5 .

3.5

4.5

5.5

6.5

7,5

6.25

8.75

M 400 .

Mp3 300.

11.25

13.75

16.25 .

18.75

44

BAAM. HIR. N

NOABUCE W GATA

HIS. Nº DOAA.

CC- 5-1H

CC-7-14

CC-9-1H

CC-11-1H

CC-13-1H CC-15-1H 5.0

7.0

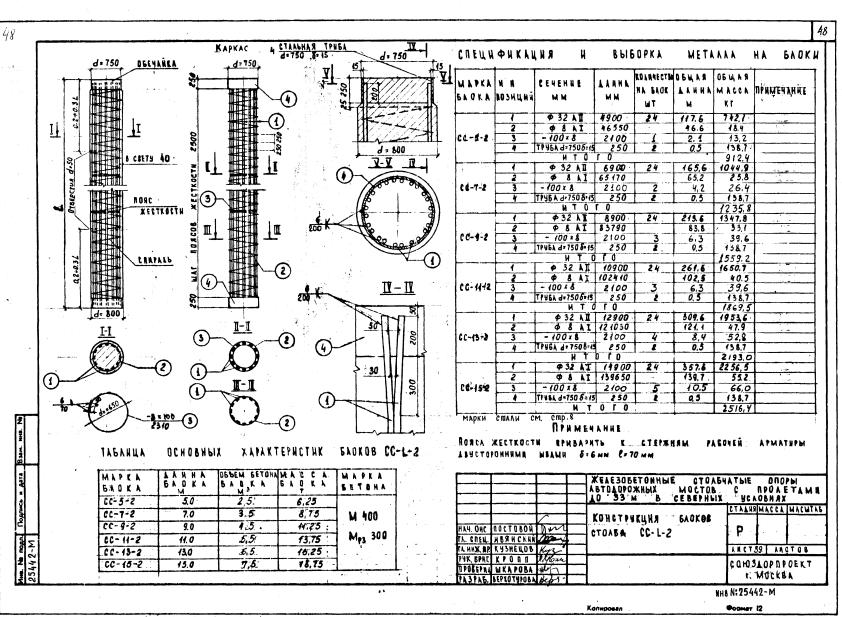
9.0

11.0

13.0

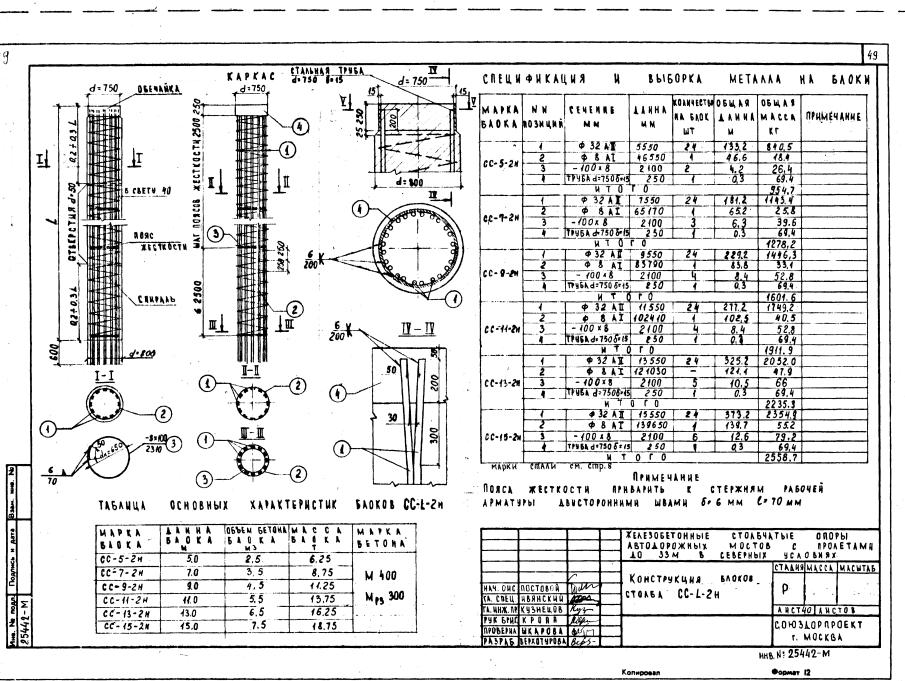
15.0

MAPKA	W W	CEHEHHE	AA#HA	KOANYECTON WA BAOK		054 A.A	DEHME4AHHE
SAOKA	позиций	MM <	M M	W7	AAHA	Kr	<i>PEAMES KIRE</i>
	7.	Ф 32 A II	5550	14 .	77.7	490.3	
	2.	PSAI	46550	-	46.6	18.4	
CC-5-1H	3	-100 x 8 ·	2100	2	4.2	26.4	
	4.	7P46A d.7308.15	250	1.	0.3.	69.4	
		HTOR				604,5	
	. 1	Φ32 A II ·	7550	14	105.7	667.0	
•	2	\$ 8 A I	65170	-	65.2	258	
C-7-1H	3	-100 x 8	2100	3	6.3	39.6	
	4.	TPYBA d= 750 8=15		1	0.3.	69.4	
		HTOSE	,			801.8	
	7	₱ 32 A II ·	9550	14'	133.7 .	843.7	
CC- 9-1H	2	\$ 8 A I .	83790	-	83.8	33.1	
	3	-100 x 8	2100	4	8.4	52.8	
	4	TP48Ad-1508-15		1 .	0.3 ,	69.4	
		HTOFO	999.0				
	1	Φ 32 A II	11 550	14	161.7	1020.4	
	٠ ج	# 8 AI	102410	<u> </u>	102.5	40.5	
C-11-14	3	- 100 x 8	2100	'4	8.4	52.8	
	4	TPYBA d+7506+15		× 1	0,3	69.4	
		HTO	70			1183.1	
	1.	Φ32 A II	13550	14.	1897		
	2.	Q 8 A I	121030.	-	121.1.	47.9	
C-13-1n	3	- 100 x 8	2100	5	10.5	52.8	
	4	TPYBA d-750 6.15		. 1 .	0.3	69.4	
		4 T O	10			13 67.1	
C-15-1H	1	932 AI	15550	14	217.7		
	2 ·	48 A I	139 650		139.7	55.2	
	3.	-100 x 8	2100	6	12.6	79.2	
	4 ,	7746 A d=150 8.15	250.	- 1	0.3	69.4.	
		HTO	1577.5				

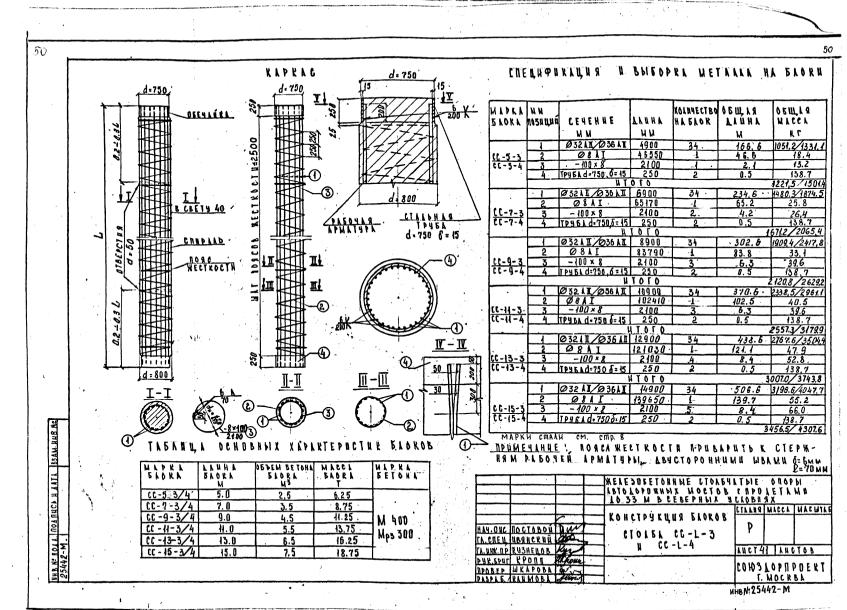

4 1

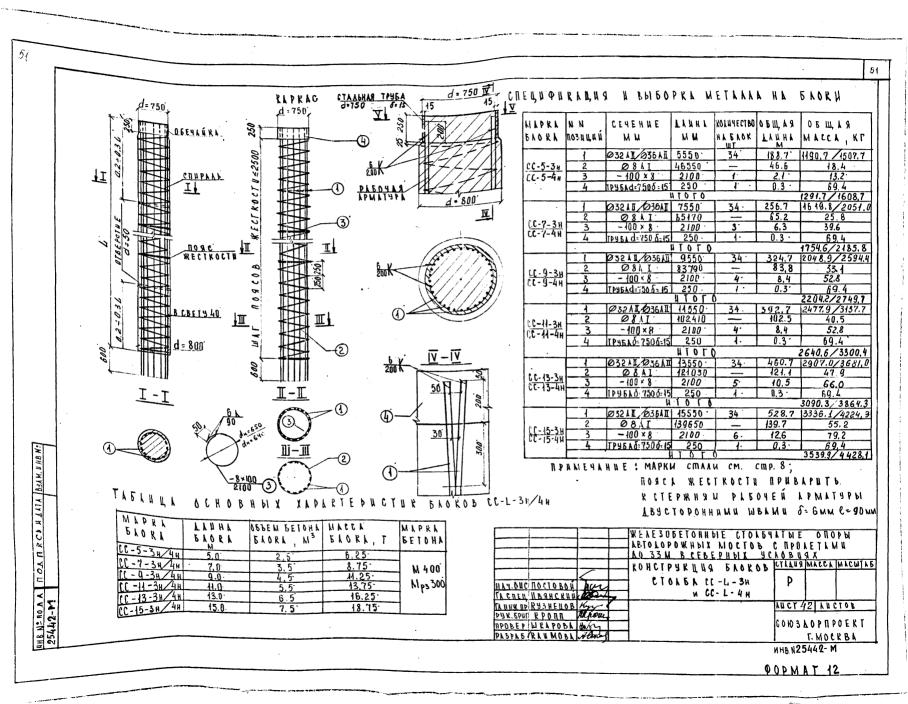
ПРИМЕЧАНИЕ

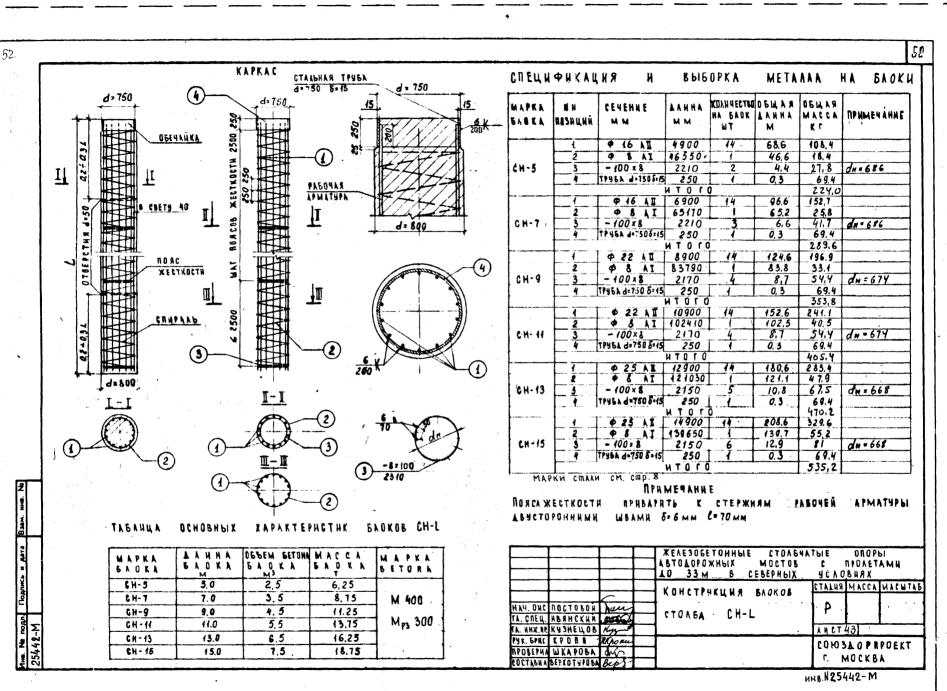
NORCA XECTKOCTH ПРИВАРИТЬ К СТЕРЖНЯМ РАБОЧЕЙ APMATUPH ABUCTOPOHHHMH WBAMH 5-6 MM C= TO MM


					C 1 YCA 08 H	PONETA I ЯХ	МН	
	,				CTALUA	MACCA	MACHTAB	
			1 8	Констрикция Блоков				
HA4. OHC	44. ОНС ПОСТОВОЙ . СПЕЦ. ИВЯНСКИ	nny		CTOABA CC-L-IN	P	1		
			4	A *	l	İ	1 1	
	KY3HE408			n . 148	AHCT 3	8 AHCT	108	
PYK. 6PH	KPONA	Mycone	,		COL	3 4 0 8 0	DOEKT	
RPOBEPHA	MKAPOBA	de			CO103A OP NPOEKT			
PA3PAB.	B E PXOTYPOLA	41061 Behs			r. MOCKBA			
					D.E. /	1.0 14		

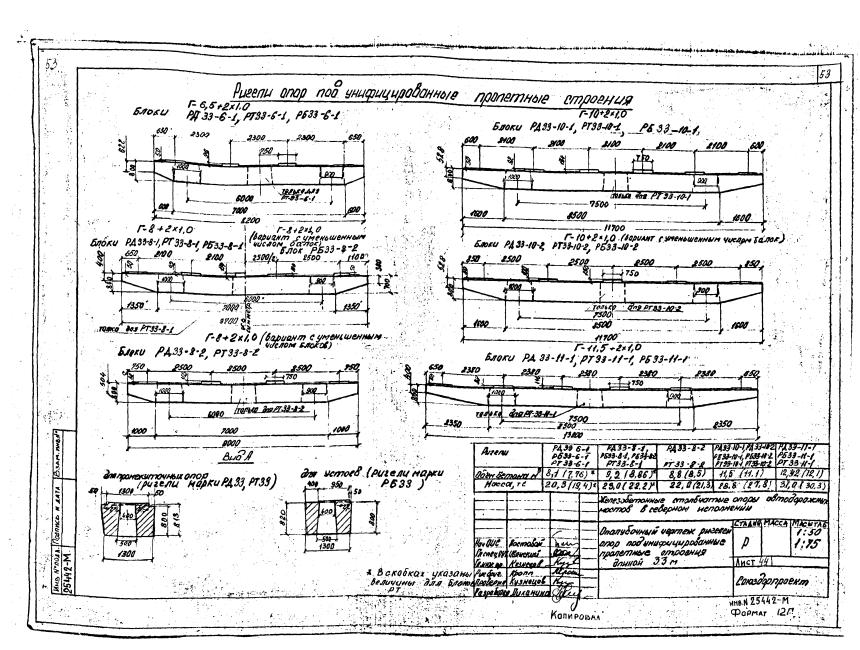
NHB.N 25442-M

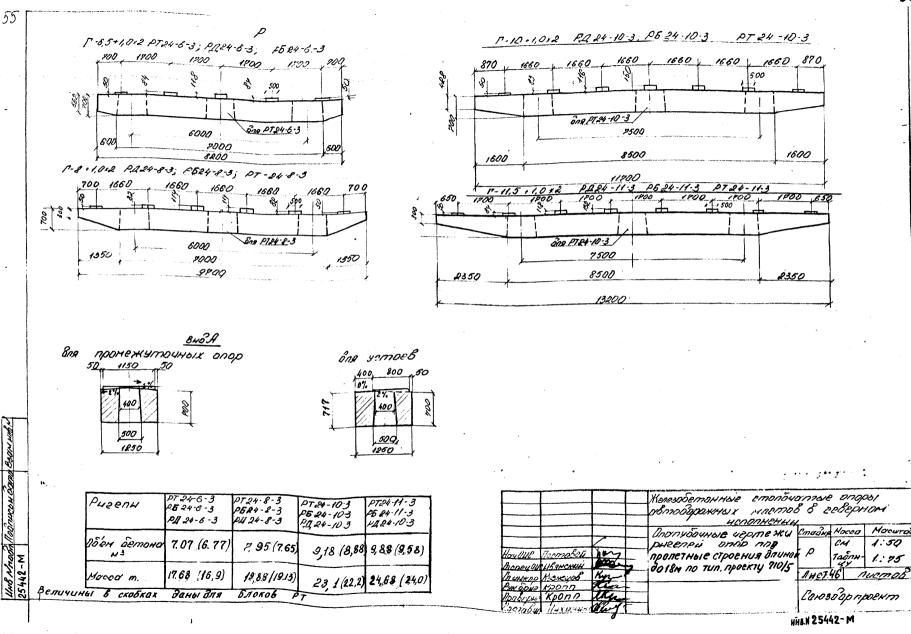


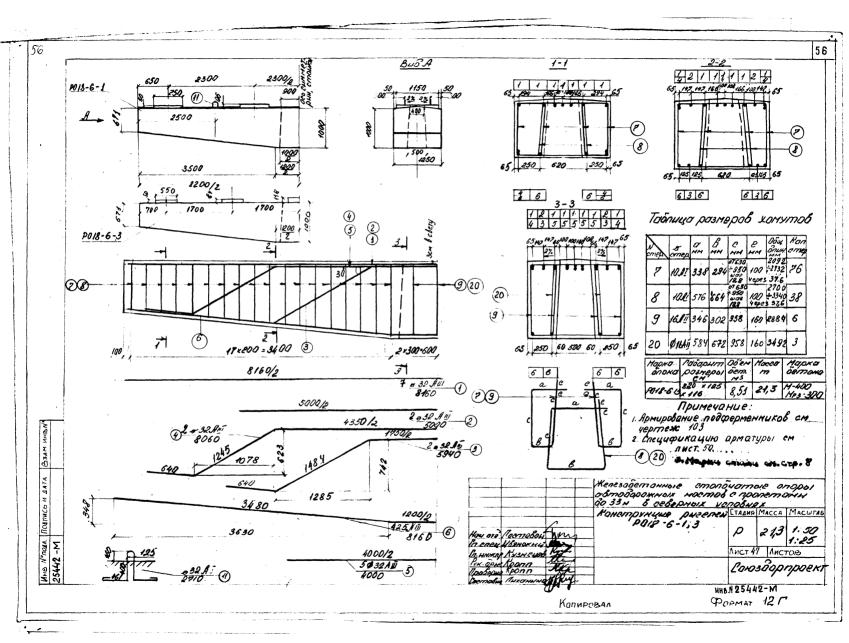

100

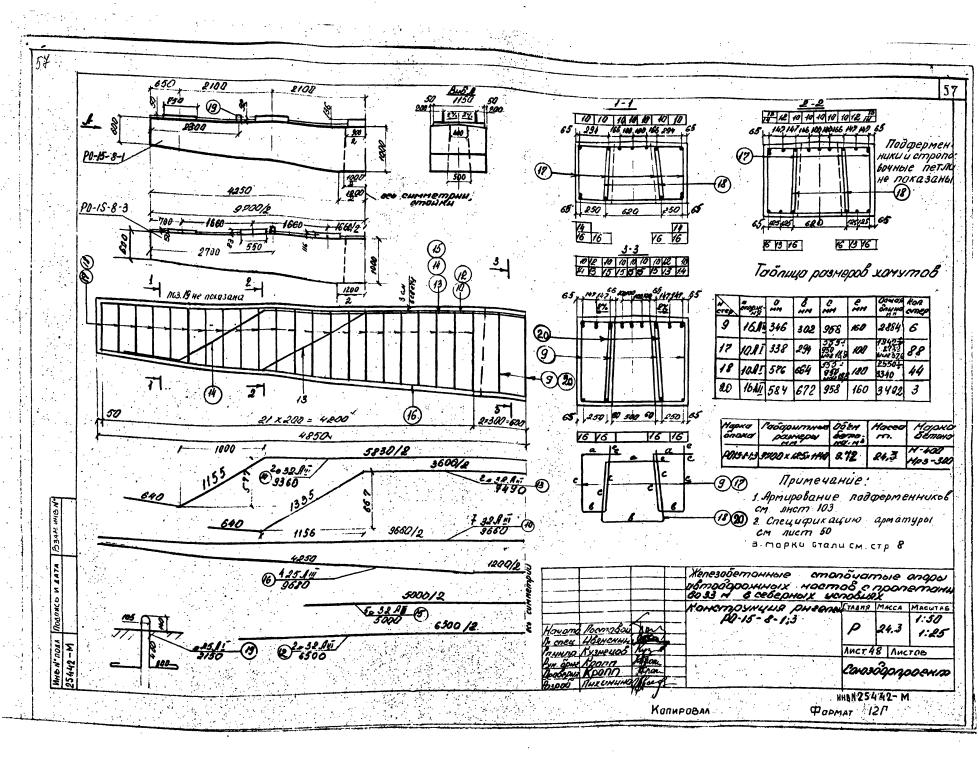

UNITE 0101 BC. OC. 02. 01. 01

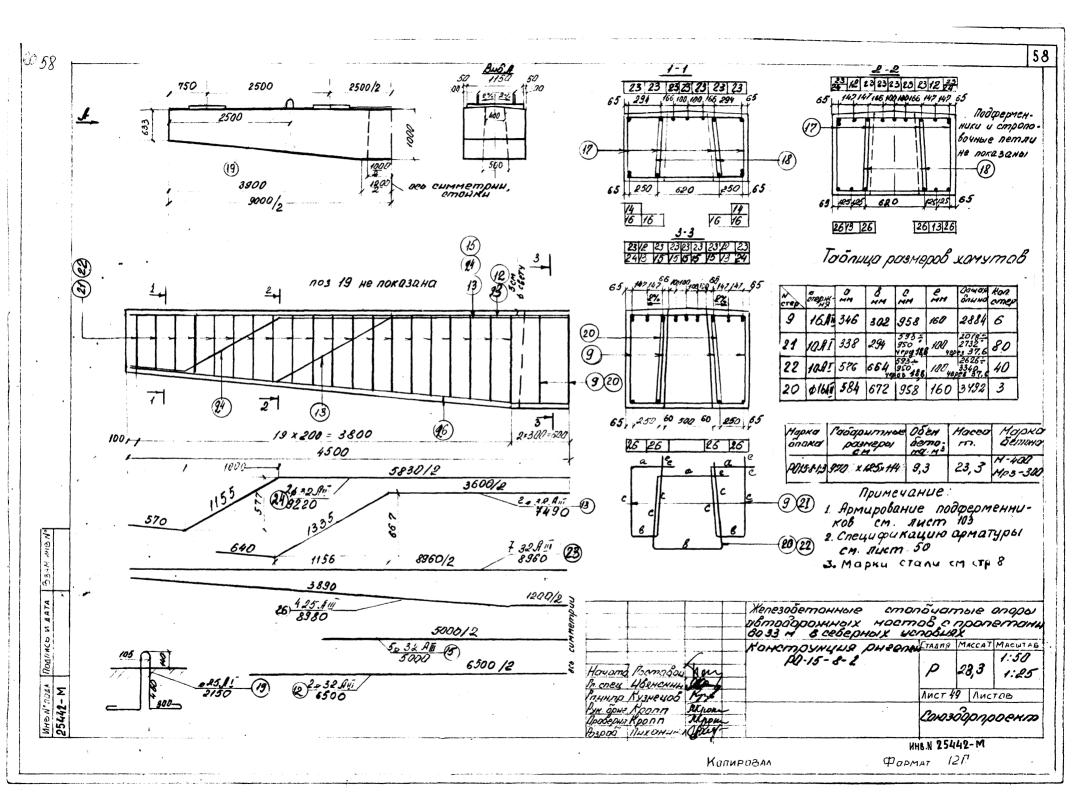
LIKTI? 0101 BC. OC. 02. 01. 01



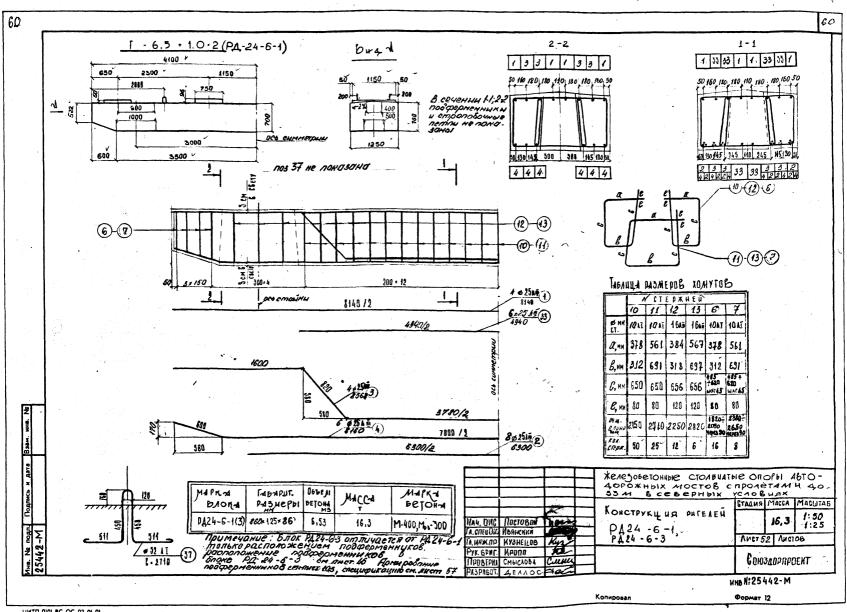


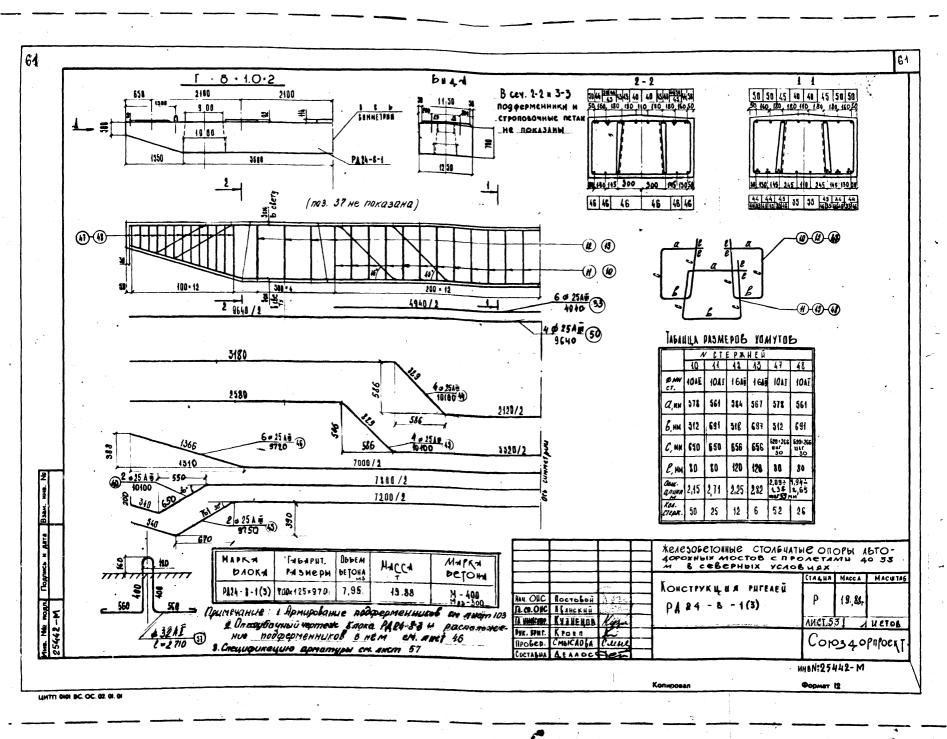

Копировал

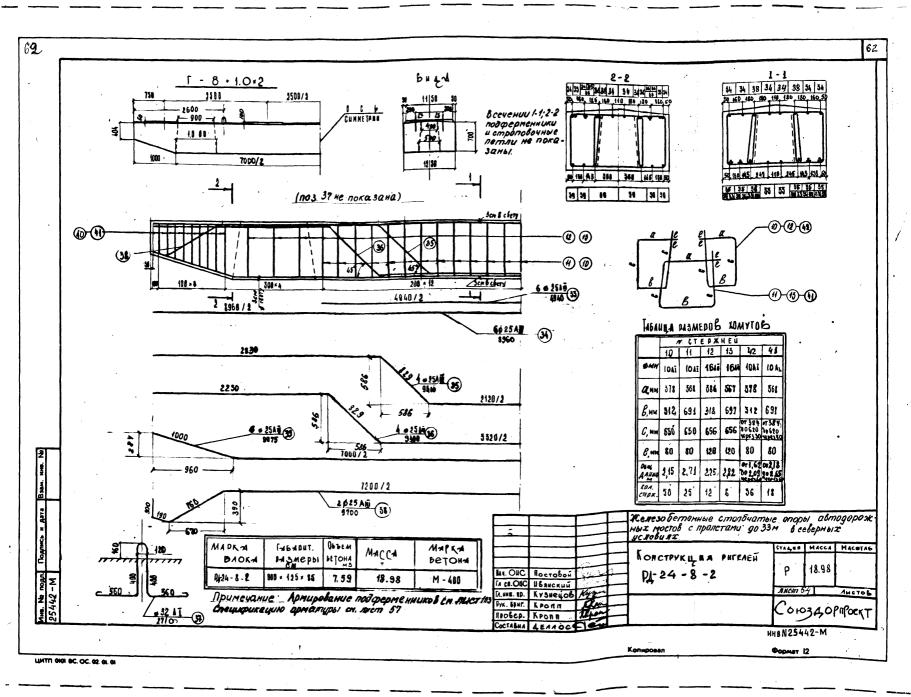

Формат 12

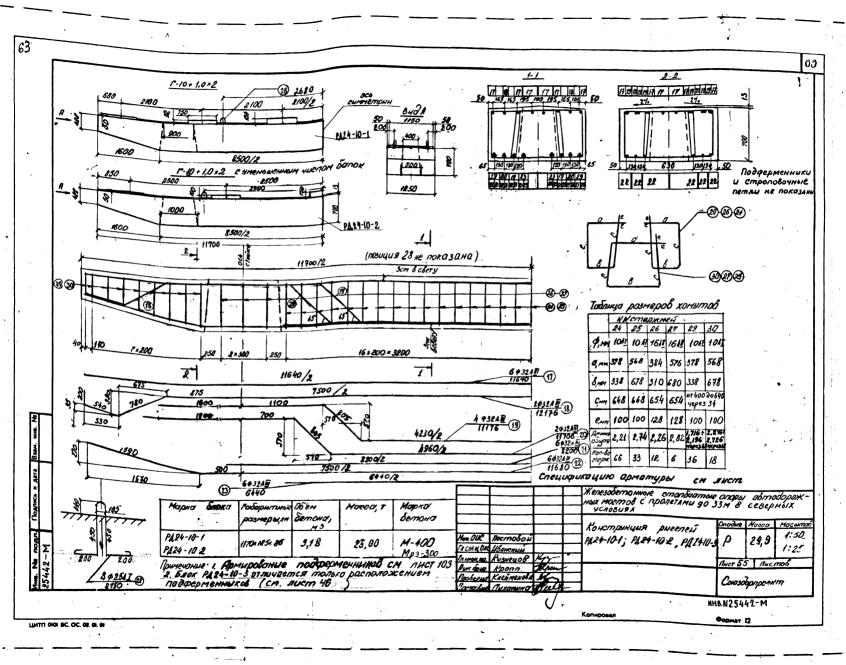


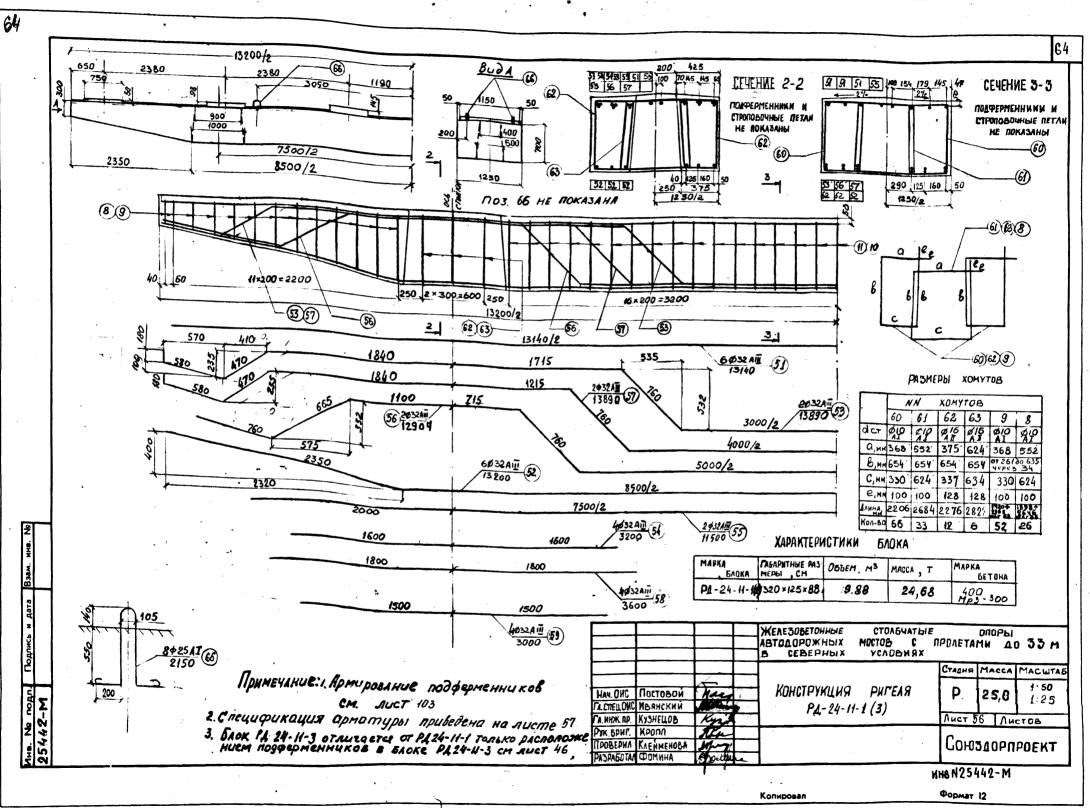
54 Ригепи опор поб инифицированные MADDREMHOLE EMPORHUS F- 6,5+2×1.0 T-10+2×1.0 BAOKU. PA 24-6-1, PT24-6-1, P624-6-1 БЛОКИ PA24-10-1, PT24-18-1, P524-10-1, 2300 2300 2100 2100 920 900 10845 0 A.18 10860 dag PT 24-10-1 6000 7500 1600 \$500 1-8+2×1.0 (640U2HM C YMENDWENHOM VOCAOM O COMO PEQ4-8-2 2500/2, 100 T-10+2 . 1.0 (BADUANT C SMENDWENNUM YURAPM BELAOR) Επόκυ PA24-8-1, PT 24-8-1 P524-8-1 ENDRU PA24-10-2, P\$24-10-2, PE24-10-2 2500 1350 Ong PT24-10-2 9700 2500 TORKO 202 PT24-8-1 1-8+2×1,0 (babuanm cymentwennym) 11700 1-11,5+2×1,0 ENORU PA24 - 8-2 PT24-8-2 BAOKU PA 24-11-1 PT 24-11-1, PE 24-11-1 200 TOTAKO 200 PT24-8-2 TODORO GOD PT. PO-H-L 2350 2350 2000 1000 PA 24-8-1, P624-8-1, P624-82 FT 24-8-1 PA24-8-2 PA24-10-1, PA24-10-1 PA24-11-PA24 6-1 BUGA Auzenu P824-10-1, P624-11-2 P624-11-1 P624-6-1 PT 24-6-1 an semoes (Puzeny Mapky BARADOMENUMOVALUE ONOD (PUZE PIL) 9. 18 (8.88) 7.07/6,77 7.95 (7.65) 7.59 (7.29) 9. 88/9.5 पर्वकर *वेंहरा*करात स्रो P524) 18.98 Hoccol. 17.68 (16.9 23.00 19.88 Хепезобетонные втолбиотые опоры овтодорожени, настов в северном исполнении * 400 CTARUS MACCA MACUTAS Onanyboynein verment puzere 500 1:50 500 опор под инифицированные Hay OUC Rocmoson 1:75 1250 ИНВ N° ПО. В. пролетные отровния Parney PV (Kenosuri BAUHOU : 8024 M Auct 46 KESHORE Объем в скобках дан для влоков РТ24 Purápue. Kponn Roobepun Kysneyob Loros Dopripo exm Газраволев Лиханин инв N 25442- М POPMAT 121 Капировал



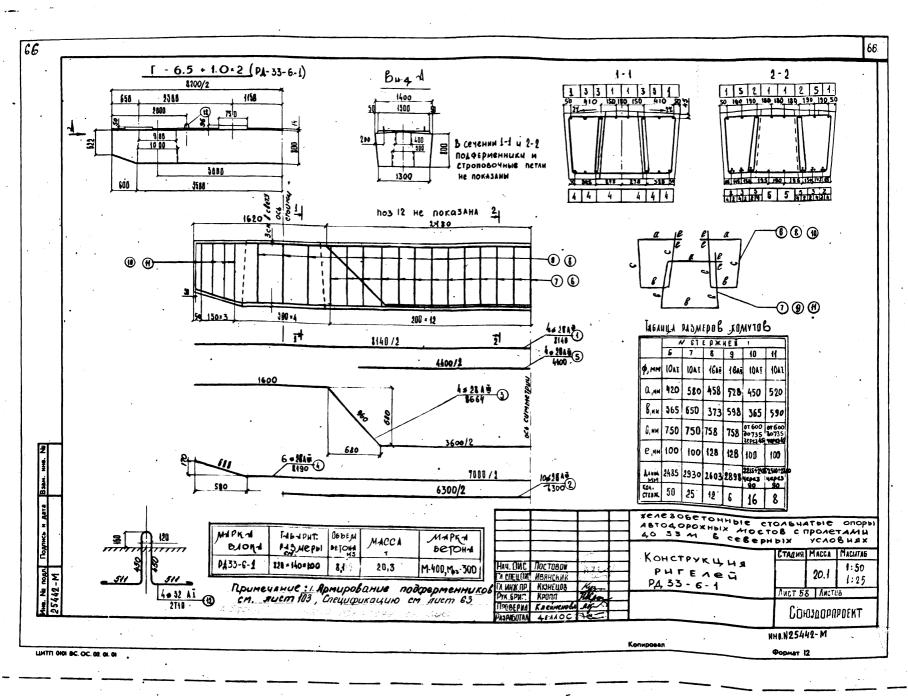

	Φυκαци	s upriui	пуры	**************************************	CE. 10	Выборко	apmat.					
a no ka	Номера позиции	DUAMETP UM U KRACC APMATYA	1 SUT MM	KOJUYBETKO WM	He M	Auonem p		Bec In. M	DOWNU DEC			e decision de la company de la
	1	32 A III	8160	7	57,12	32 A [ii	115.12	6,31	726.41	• •		
	2	32 A III	5000	2.	10,0	25 A M	32.64	3.85	125.66			
	3	32 A III	5940	2	11.88	16 A 🛚	27.78	1.58	43.89			
	4	32 A III	8060	2	16,12	32 A I	10.84	6.31	68,40		•	
is	5	32 A 111	4000	· <i>5</i>	20,0	10 AI	298.06	0.617	183.90			
7-	6	25 A !!!	8160.	4	32,64	·	U	mozo:	1148.26		•	·
P018-6-1;3	7	IDAI	2412-lep		183,3			AI Ber3 cn2	252.3			
90	8	10 A Z	3020° Cep		114.76	B MOM	yucne:	A. 1017	43,89		•	*
0	9	16 A TI	2884	_6	17.30			ATT 25126	852.07			
٥	20	1611	3492	3	10,48							
	11	32AI	27/0	4	10,84						•	
	10	32 A W	9660	7	67,62	32 A III	139.32	6.31	879.11			
	12	32 A III	6500	2	13.00	25 A III	38,72	3.85	149.07			
	13	32 A III	7490	2	14.98	16 A II	27. 78	1,58	43, 89			
m .	15	32 A III 32 A III	9360 5000	2	18.72	25 A I	17.20	3.85	66, 22			
7	16	25 A TI	9680		38, 72	10 AI		0,617	206,84			
90	17	10 A I	2337=lcp	88	205,66			AIBer3cn2	1345,13			
1	18	10 AI	2945 - Cop		129,58	8			273.06			
P015	g	16AT	2884	6	17. 30	B TOM	iuene:	A -TI 1017	43, 89			
2	20	16 A []	3492	3	10, 48			ANI 25/20	1028,18			
	19	25AI	2150	8	17. 20	į						
	23	32 A IL	8960	7	62,72	32 A Ti	134.14	6.31	846,42		•	
	12	32 A W	6500	2	13,00	25 A TI	35.92	3.85	138.29			÷
	13	32 A 111	7490	2	14.98	16 A II	27.78	1, 58	43, 89			
	15	32 A III	5000	5	25,00	25 A I	17.20	3,85	66.22			
8	24	32 411	9220	é	18,44	10 A I	309.32	0.617	190,85			
	26	254111	8980	4	35.92			umozo:	1285,67			
Po 15-8	21	10 A I	2375= les		190,0			AI Ber3 en2				
01	22	IOAZ	2983=64		119.32	A man	vuene:	9 - 1 10M	43, 89			
0	g	16 A I	2884	. 6	17,30	0 ,		A & 2572C	984.71	•		
1	20 .	16 A II	3492	3	10,48			37 20 20 20	- **			
	19	25AI	2150	8	17.2				1 1		•	
			APKH CTAAH	см. стр. 8		L		<u> </u>				•
											Железобетонные ст	ольчатые опоры
											автодорожных мостов	с пролетами до в
								ļ			в северных условия	. ETALINA MACCA MACW
								-		+	Спецификация и выборка арматуры	,
				•				Hau A	HC Nocmoboù	Jan	ригелей РО15-8-1,2,3	ρ
					•			T.7.00	CULLIC UBANCKU	1.000	_ # PO18-6-1,2,3	
								27 UN	OK AN XY3HELLO	Kin		CONSTONATOR
							•	Pyx. 6	per. Kponn	Thou	_	1
								Pala	pur. Kponn epun Kponn ab. Juxahun	on Well		г. Москва
						**************************************		1.430		74		HHB.N 25442-M

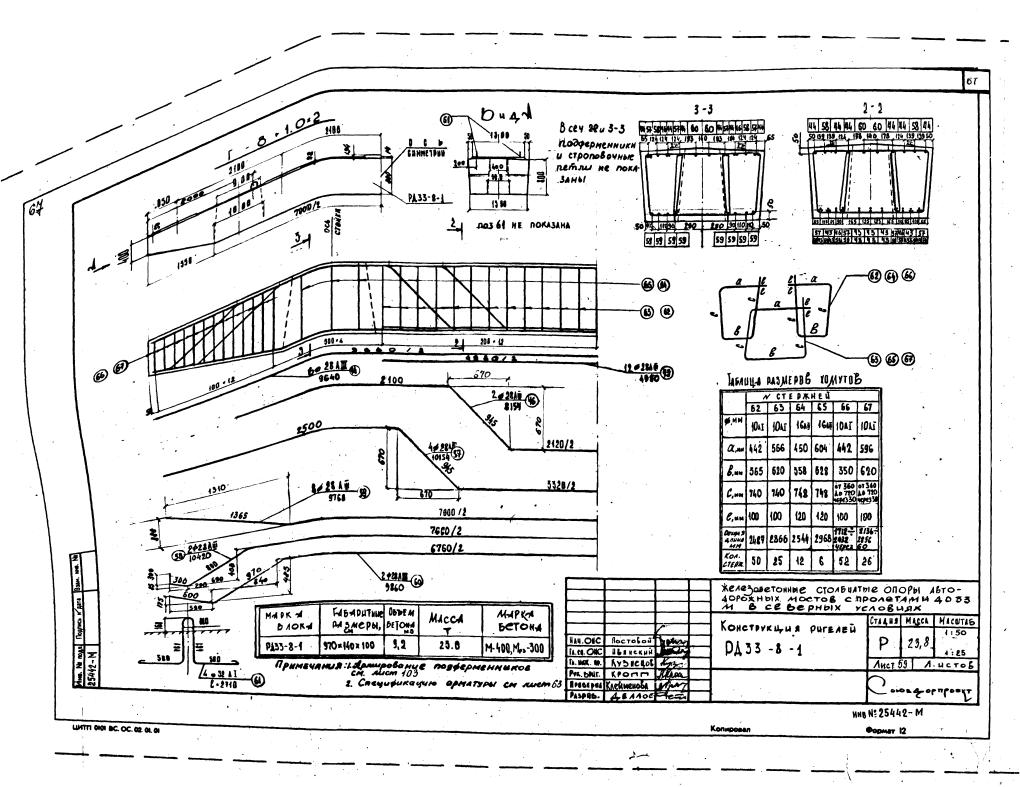


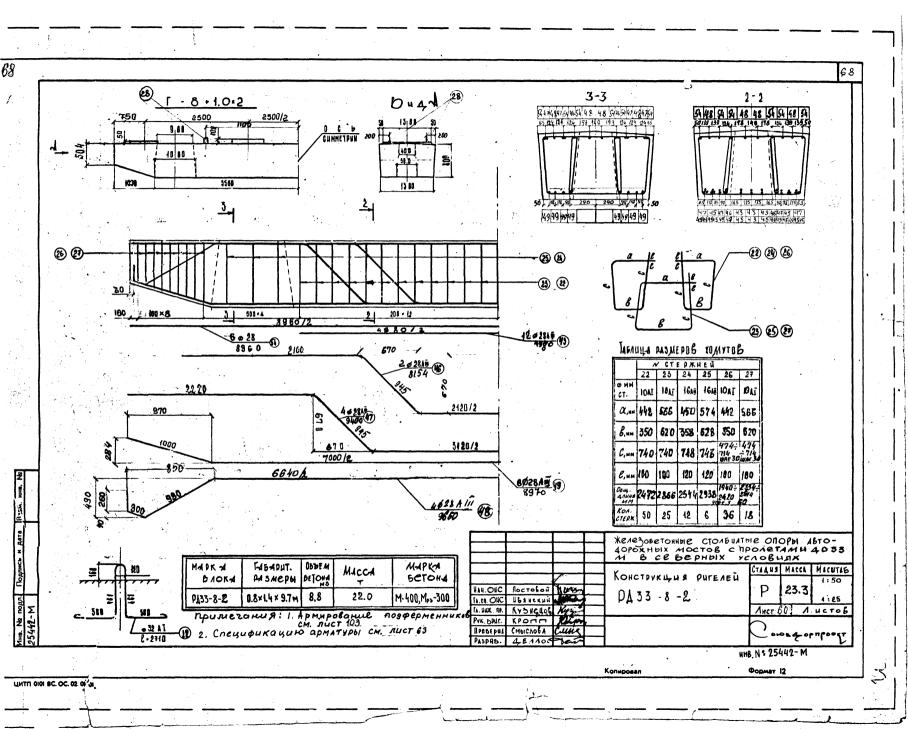

LINTE 0101 BC. OC. 02. 01. 01

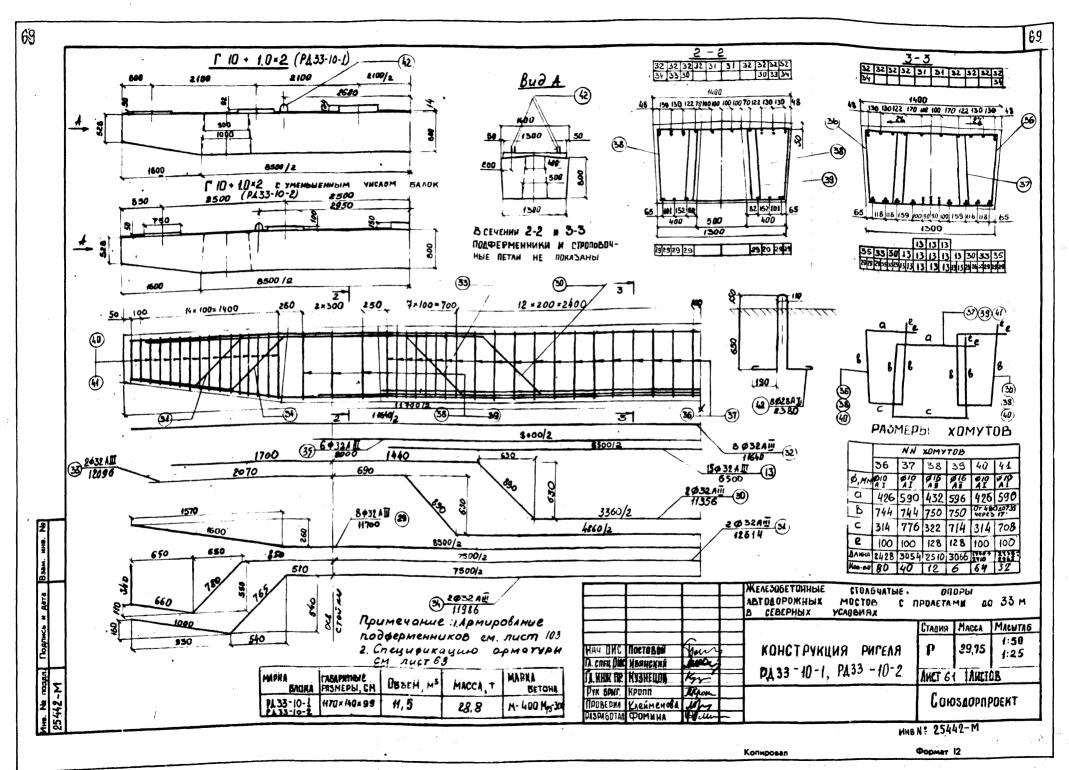

A CHARLES TO SERVICE

B74041

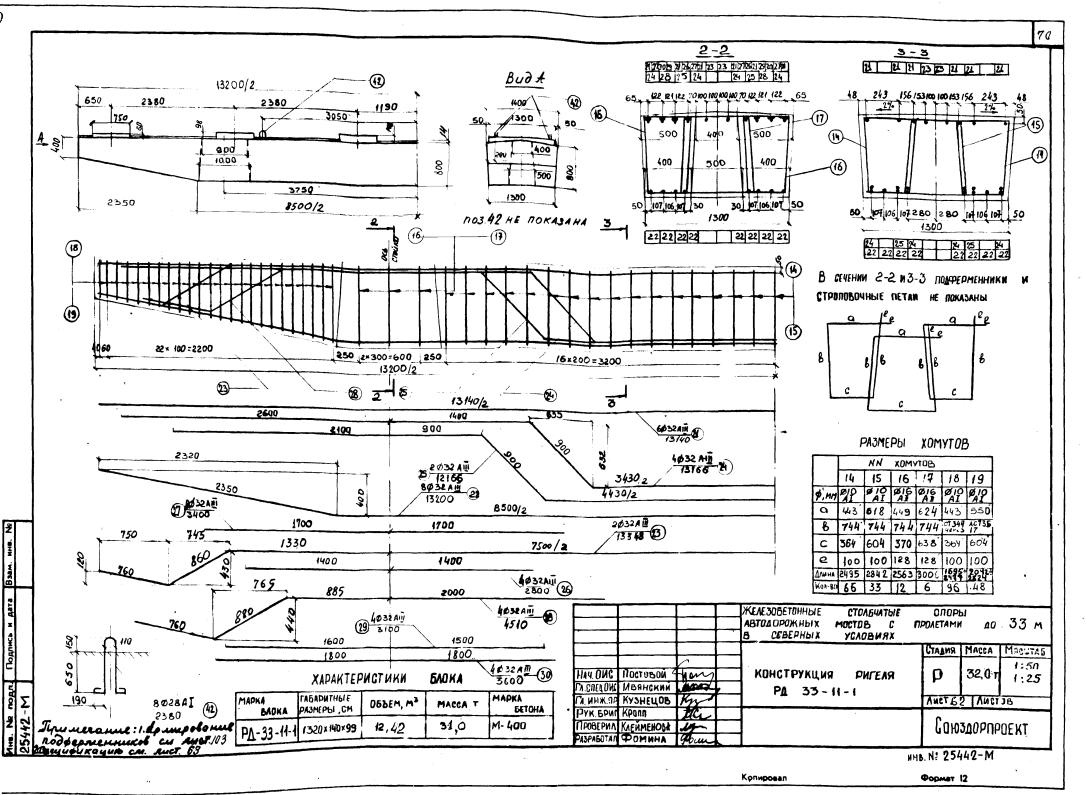


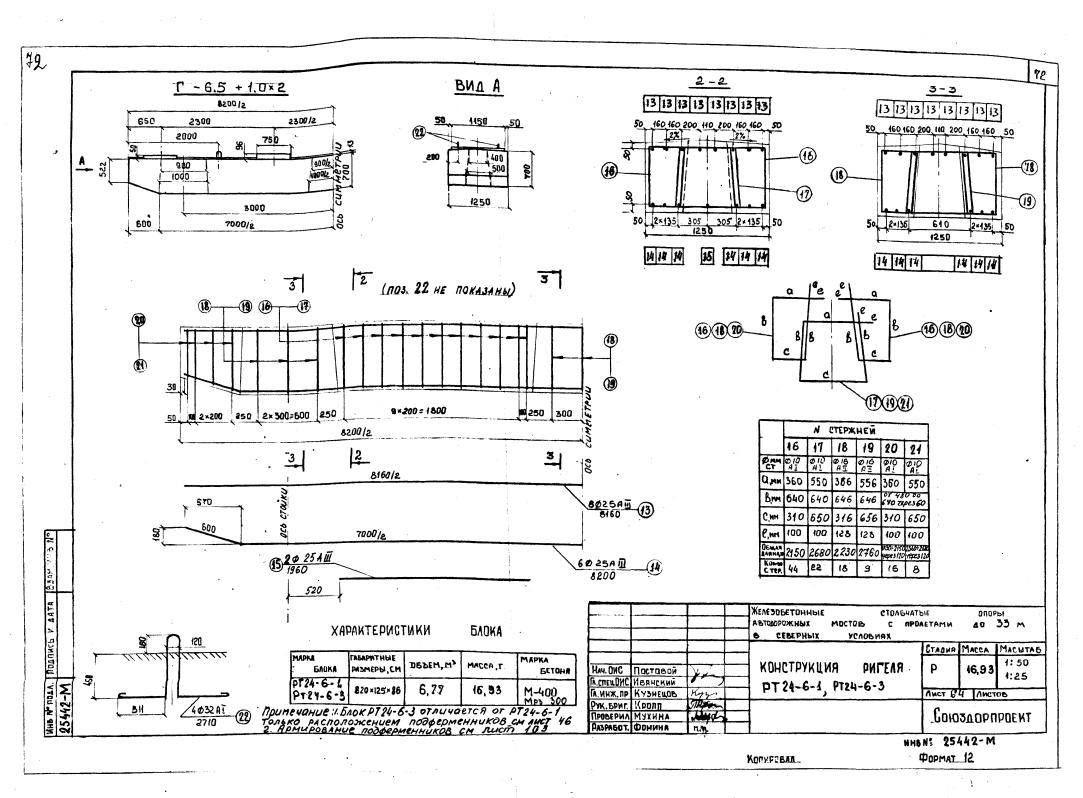


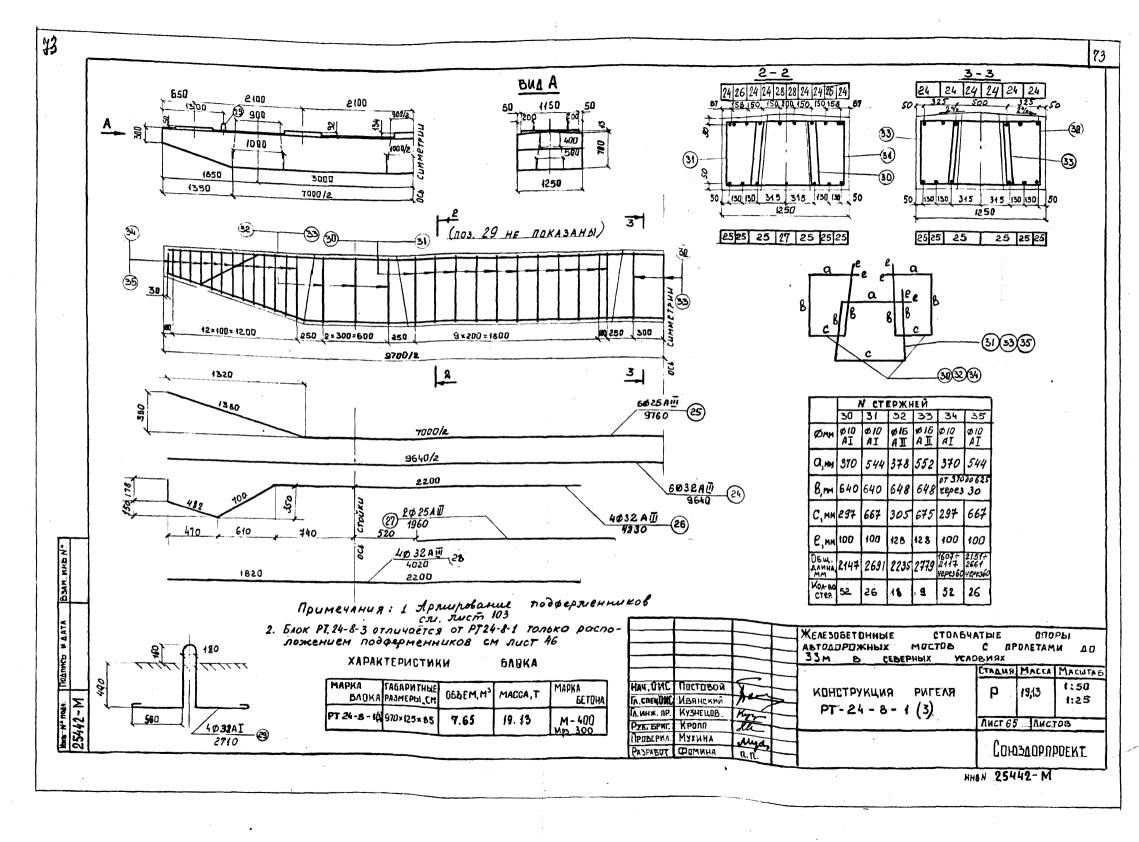


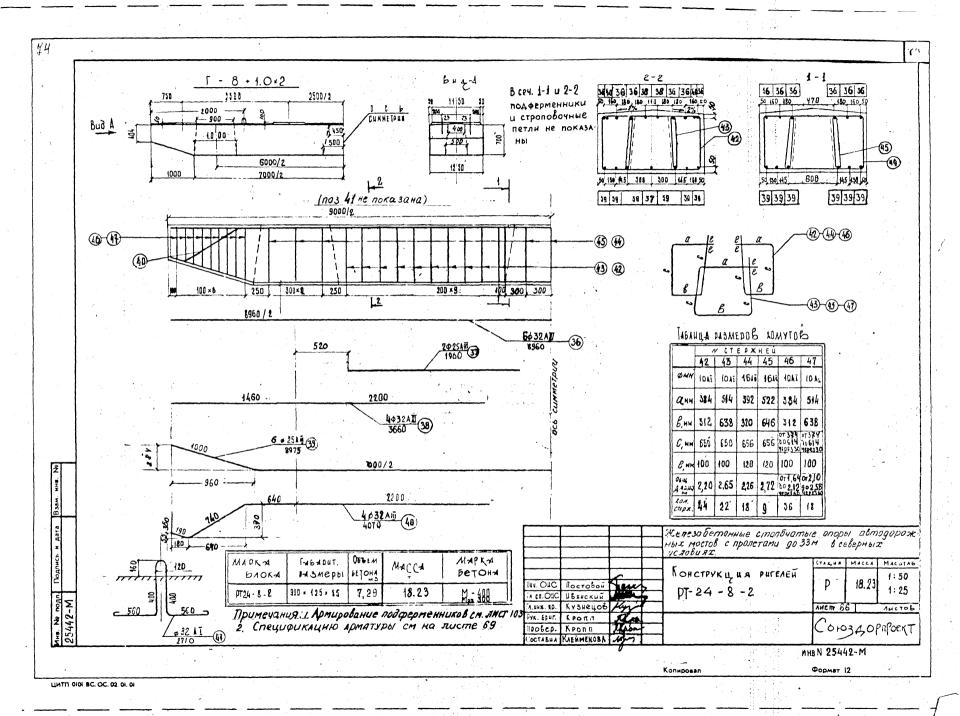


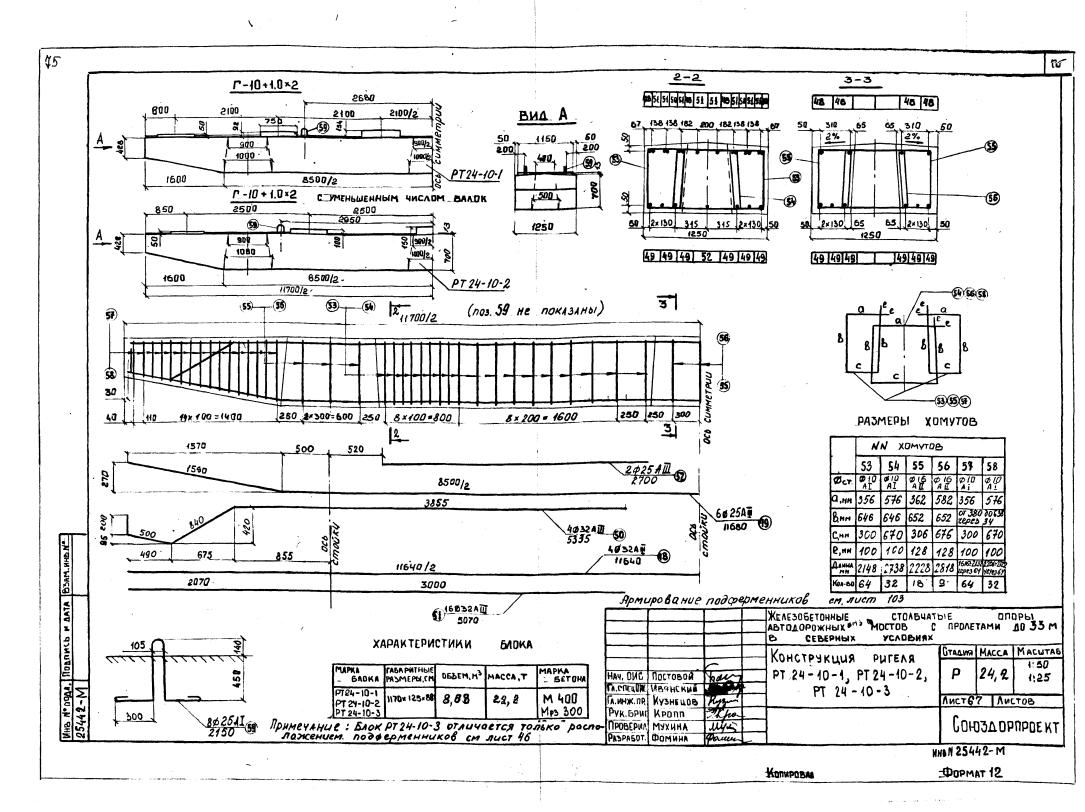
	С	ПЕЦи	Фик	~4 LL, U	Я	В	b1 6 O	PKA	
Mapka 510ka	НОМЕРА ПОЗИЦИЙ	Д. НА ЛІЕТР ММ Н КЛАСС АРМАТУРЫ	4, 1 UT MM	KO1-80	ОБЩАЯ 4ЛИНА М	4 HAMETP	ОБЩАЯ ДЛИНА	Bec In.M.	Oemun BE
	5 3 ·	25 A ซี	4940	6	29.64		M	3.85	893.2
	34	25 A 🗓	8960.	6 .	53.76	25 A @	232.O 285.5	0.617	176,2
1	35	25 A 🗓	9400	4 .	37.6	16 A I	43.92	1,58	69.4
1 1/0	36 .	25 A 11	9400	4	37.6	32 A I	10.84	6.31	68.4
РД-24-8- -2	38	25 A 🗓	9700	5	19,4 .	J2 7 3		HTOTO:	1207.2
	39	10 V I .	8975 2150	6 .	53.9			Brom HUCAE:	
	- 11	10 A I	2710	50	107.5			Al Bet Sen	244.6
	12	16 A Ī	2250	25 .	61.15			AS 10 FT	69.4
	13	16 A F	2820.	12	27.0		•	A# 25 12C	893.2.
	42	10 A I .	1855	36	16.92				
	41	10 A I .	2415	18	66.78 43.47				
	37	32 A I	2710	4	10.84			-	
					10.84			1	
	33 .	25 A #	4940	6	29.64	25 A 🗓	247.1	3.85	951.30
I	50	25 A m	9640	4 .	38.56	10 A I	325.45	0.617	200.80
	44 .	25 A ·	10100	4 ·	40.40	16 A E	43.92	1.58	69.40
	43	25 A 4	10100	4 .	40.40	32 A-T	10.84	6.31	68.40
اه رور	46	25 A 11	9120 10100 ·	6	58.39		1.7		
<u> </u>	40 :	25 4 5	9750	2	20.20.		,	Итого:	1289.90
-1(5)	45 .	10 A I	2150	<u>2</u>	19.50			D TOM HUCAE:	
	11	10 A I	2710	25	101.5 · 61.75 ·	-		AT BCT SCT	769.2
	12	16 A II	2 2 50	12	61.75 · 27.0 ·			A # 10 Ft	69.4
	13	16 A ! ·	2820	6	16.92			A # 25 72 C	951.3
	47	IO A E	1740 ·	52	90.50				
	48	10 A I	2295	26	59,70			•	
	57	32 A I	2110	4 .	10.84				
. 1									
	1	25 A 11 .	8140 -	4 .	32.56 ·	25 A 🗓	195,83	გ. 85	753.95
1	55	25 4 11	4940	6	29.64	10 A I	226.65	0,617	139.84
1-24-6-1	3	25 A 15 ·	8568 · 8160 ·	4 .	34.27	16 A I	43.92	1.58	69.39
L	4	25 A W	6300	6	48.96	32 A I	10.84	6.51	68.4
PA-24-6-3	2	25 A M	2150	8 50	50.4	,		BTOM UNCAE:	1031.58
1	10	10 A I	2710	25	67.75			A! Bet 3en	208.24
	11	16 A !	2250	- 12	27.0			A 1 10 FT	69.39
	13	16 A I	2820	6	16.92			Α Ψ 25 Γ2c	753,95
	6	10 A I	1955	16	31,28	•]		
	7	10 AI	2515	8	20.12	•	•		
	37	32 A I	2110	4:]	10.84				
			11640			32 A 🗓	320.23	6.31	2020.7
L	17	32 A II	11640	2	69.84	10 A I	351.66	0.617	216,97
PA-24-10- -1(2;3)	18	32 A 🗓 .	11176	4	24.35	16 A 1	44.04	1.58	69.58
	19 20	32 A II	11706		23.41	25 A I	17.20	3.85	66.22
	21	32 A 🗓	8200	6	49.2			Utoro	2373,47
	22	32 A A	11680	6	70.08		. 1	STOM UHCAE:	
	23	32 A 🗓 ·	6440	6	38.64			Alber den	283.19
	24	10 A I	2210	66	145.86	1	· .	A 10 ft	69.58
	25	10 4 [2740	35	90.42		. 1	A @ 25 [2c	2020.7
	26	16 A I	2260	12	27.12		•		
	21	16 A E	2820	6	16.92	,			
	28	25 A I	2150	36	17.20			.•	
	29	1041	2490	18	44.82				•
	30	10AI 32 A W	13 140	6 .	78.84	32 1 1	301.61	6.31	1903.16
	53	32 A Ü	13 890	2	21.78	10 4 1	386.53 44.24	0.617 1.58	238.50
	57	32 4 1	15 890 12 9 0 4	2	27.78 25.81	16 A L 25 A I	17.2	1, 58 3,85	69.90
	56	32 A #	13 200	6	79.2			41010	2277.8
<u>-24-11-</u>	52 55 54	32 A 15 ·	11500	2	23.0			B TOM WHEAT	3 04,72
-1 (3)	54	32 A B .	3 600	4	12.8		į	AT BCT 3cT	69,90
١ (٢)	58 59	32 A 🗓 52 A 🗓	3000	4	12.0			A 11 25 12C	1 903.16
	59	10 A Ī	2206	. 66	145.60		·		
	64	10 A I	2 684 2 276	33 ·	88.57 27.51	`			
	62	16 A II	5855.	6 .	16.93	•		z *-	
}	63	10 A I	1794	52	9 3.29				
Ì	8	10 A I	2 2 7 2 215 D	26	5 9 . 07 11 · 2	·			
	66	251	£13U	U. OUC:n		₩ene zofi	emonune et	011649- CTA4H	4 1/1/2 = 2 1 1:
					OCTOBO II	TOIL UNOPE	i aomooopos	WCH bIXC	HAC CA MAC
					(Y3HE4OB Kyzn	MOCTOB B	северном исп	ONHE- Auc	F57 AHCTO
				Pyk. SPUE			Q4.48 4 8615	anko	
			,	Mante 1	(AEMMEHOBA MES	apmamup	bi purenec	· CO103	CHOP TIPOEK
						PA 24	/		· MOEKBO

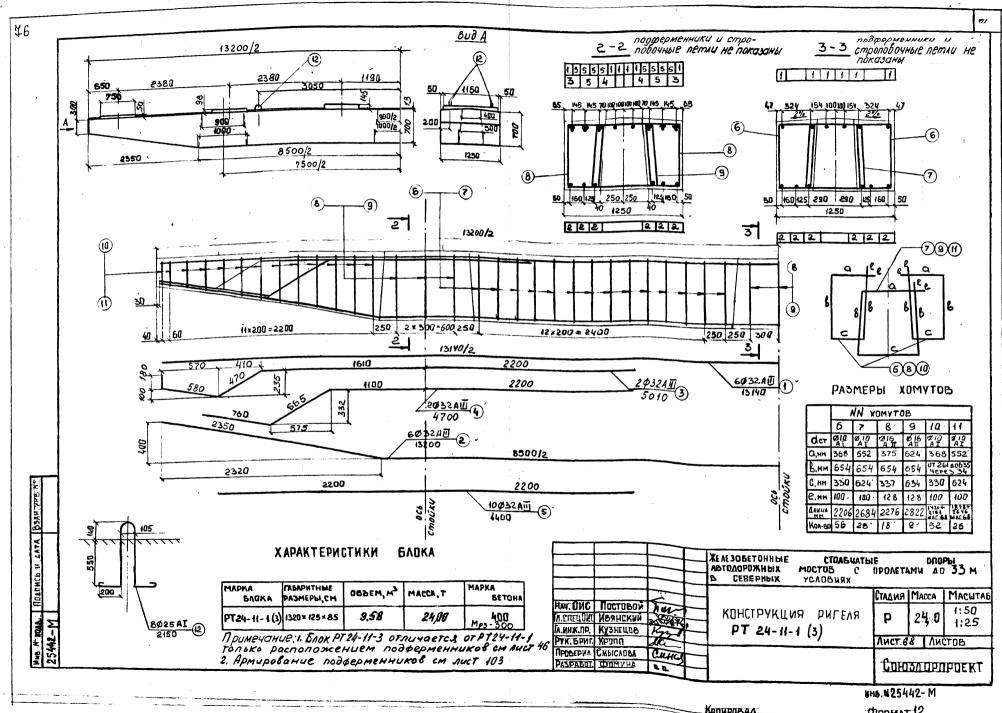


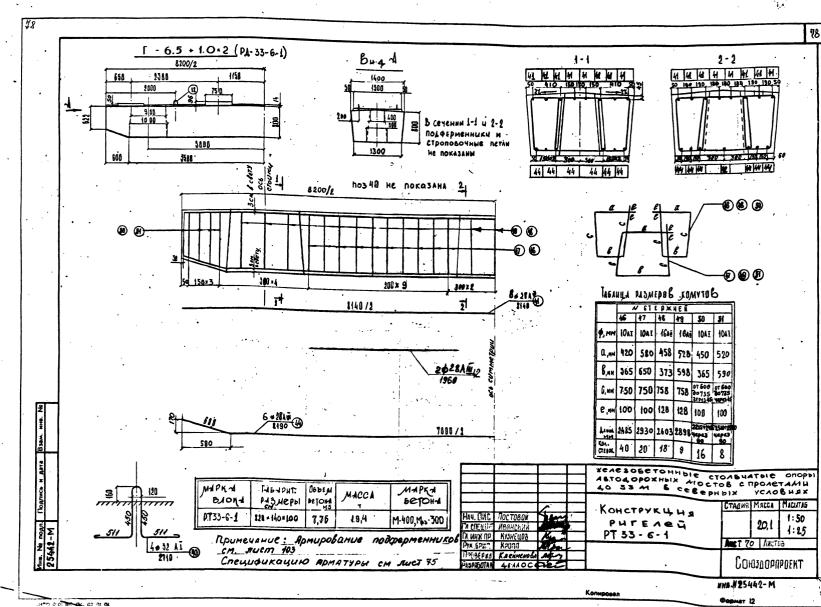


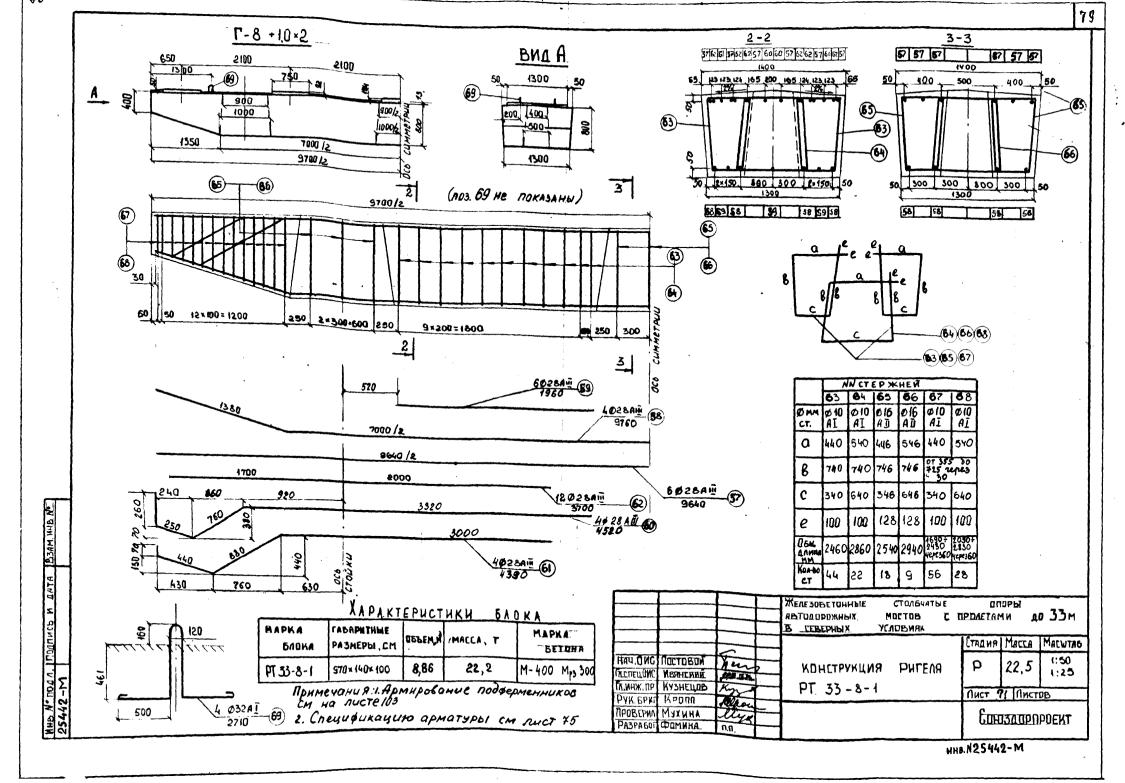

LINTE 8101 BC. OC. 02. 01. 01

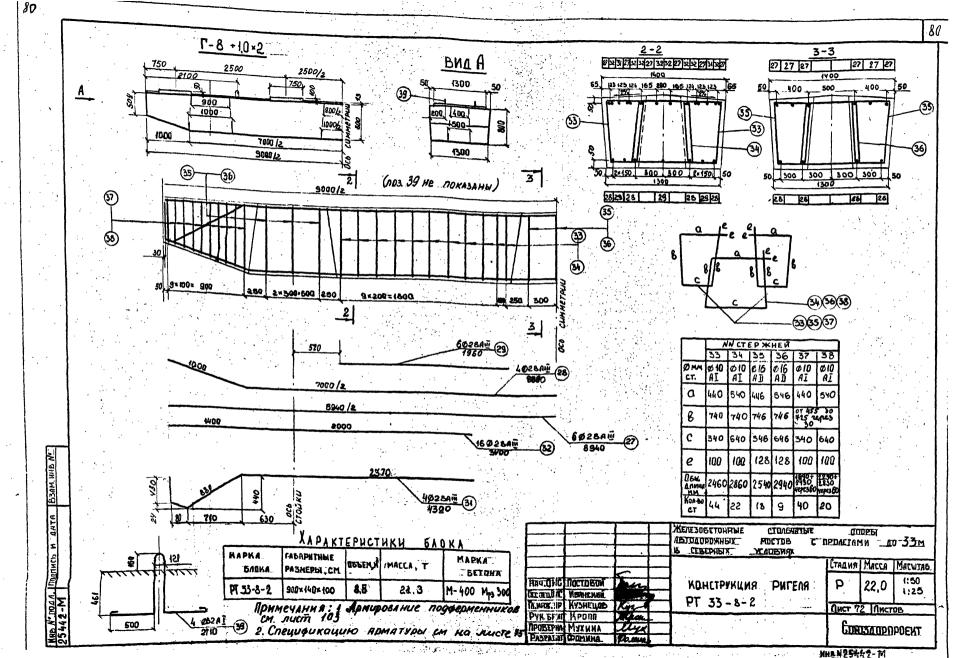


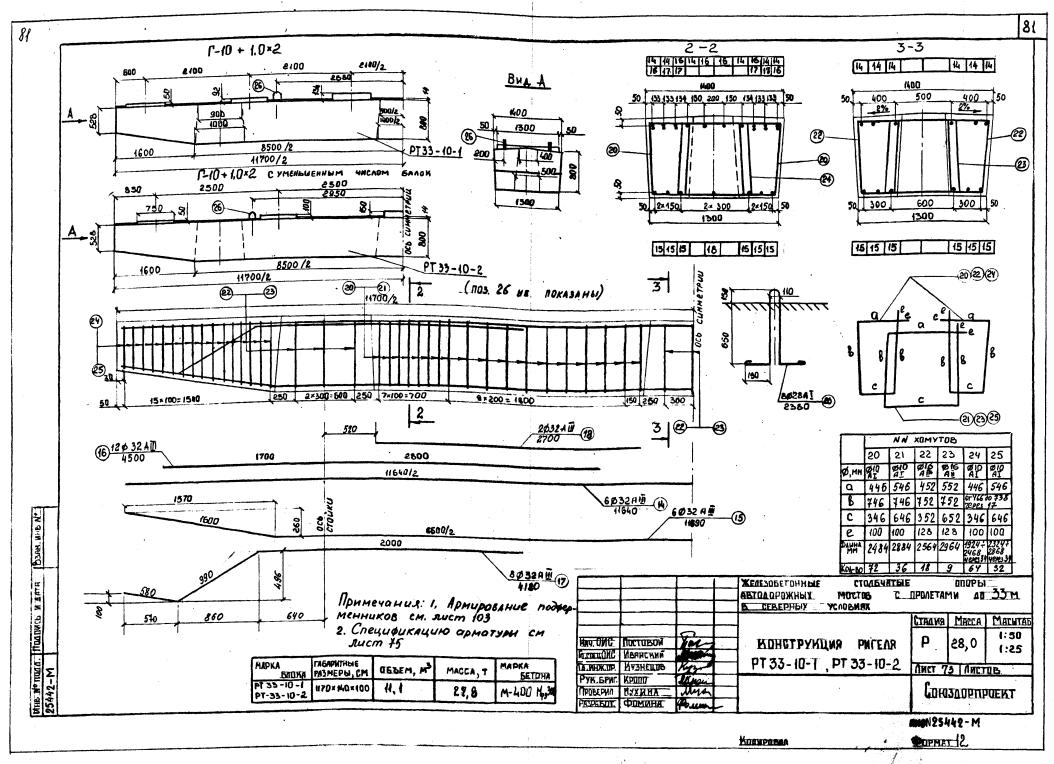

* HHBN: noon Rodner U DESA BLOM UND Nº 25442 - M cne K A И В HOMEPA MAPKA bl Б 0 KA LIAMETP MM 4AUHA 06Щ4я K01-60 BAOKA TULUEON A SAACC AP. 4. HAMETP. 1 SUT, MA OBULAR BEC 1 11.M. 414HA OBILLUI BEC MM AAUHA KΓ Kr M 28 A m 8140 32.56 28 A iii 5 196.96 28 A 9 4400 4.85 951.32 17.6 IDAI. 28 A # 8664 255.90 0.617 157.89 34.66 16 A II 23 A W 48.63 76.84 8190 1.58 49.14 32 AI 10.84 PA-33-6 33 1 9 6300 6.51 68.40 10 63.00 10 A I 2485 1254.45 Htoro 50 124.25 10 A I 2930 BTOM HHEAE; 25 73.25 8 16 A 5 2603 12 A ! Ber Sen 226.29 31.24 16 A ! 76.84 2898 A E 10 FT 9 17.39 6 10 10 A I A # 25 F2C 951.32 2335 16 37.36 11 10 A I 2630 8 21.04 12 32 A I 2710 10.84 32 :2 A @ 11640 R 93.12 32 A @ 428.32 2702.7 55 32 A @ 2 8 8 6 6.31 48.00 10 A I 541.23 0.617 333.94 32 A E 13 6500 15 47.50 16 A E 48.52 1.58 76.66 32 A 4 30 11356 2 22.71 PA-33-10 28 A T 19.04 33 20 4.83 91.96 12 A 4 12056 24.19 3205.26 HTOFO 32 1 4 14708 93.6 -1(2) DIOM HHEAE: 31 12 A 4 25.23 12614 2 425.9 A I Ber Ben 34 32 A B 41986 2 23.97 4 1 10 Ft 76.66 36 10 A I 2428 80 194.24 2702.7 1 1 25 F2c 37 13 A 3 054 40 122.16 38 16 A 5 2510 12 30.12 39 16 A 3066 6 18. 40 48 10 A I 2156 137.98 64 41 13 A I 2714 32 86.85 42 28 A I 2380 19.04 21 13140 32 A M 18.84 32 A B 374.37 2343.36 6.31 32 A 4 24 13166 52.66 48 A T 575.83 0.617 355.29 25 52 A 4 12166 2 24.33 16 A !! 48.79 77.09 1.58 11-33-32 A W 22 13200 105.60 28 N I 4.83 19.04 41.96 27 32 A 9 3 400 27.20 -11-1 Итого 2867.7 32 A B 15 348 23 26.70 B TOM HHEAE: 26 32 A 4 2800 11.20 447.25 Alber Sen 28 32 A P 4510 18.04 YI 10 L+ 77. 09 29 32 A P 3 100 12.40 1 4 25 F2C 2343.36 30 32 A 1 3600 14.40 10 A 2495 14 164.67 66 10 A I 2 842 2 563 15 33 12 93.79 16 16 A 3 30.76 3 006 17 16 A 1 6 18.04 2 086 18 DAI 96 200.26 2 440 19 10 AI 48 117.12 28 AI 2 380 12 19. 04 28 A W 43 4980 59.76 28 A II 293.17 368.64 1416.00 4.83 28 AB 44 9640 6 57.84 10 AT 0.617 227.50 28 AII 8154 45 PA-33-16. 31 16 A.I 48.34 76.38 1.58 10154 28 A 57 40.62 3241 10.84 6.31 68.40 58 59 10420 28 A II 20.84 -8-1 Итого 1788.28 28 A II 9760 8 78.08 B TOM HICKE 28 AB 9860 60 2 19.72 195.90 AI BCT 3 cn 2710 61 32 A I 10.84 76.38 TIOIT A IOAI 2487 50 62 124.35 1416.00 A III 25 [2C 2866 63 10 4 I 71.65 25 645 16 A B 2544 12 30.53 16 AT 2968 17.81 2072 2496 4980 8154 10 AI 28 AH 28 AII 26 12 43 467 28 A II 10 A I 16 A II 4.83 0.617 1.58 277.83 1341. 92 16.34 197.48 320.06 28 A III 28 A III 28 A III 9400 37.60 9660 8970 38.64 48 4 8 6 6.31 10.84 68.40 PA-33 49 54 62 63 64 65 UTOTO 28 A M 8960 53.76 B TOM YHEAR -8-2 50 25 265.88 2472 TAOF 123.60 AT BCT3CH 10 A I 2866 71.65 76.09 2544 2938 16 A 🛚 12 30.53 AD 25 [2C 1341.92 16 A II 17.63 66 HOAI 2180 36 78.48 10 A] 32 A] 2574 46.33 10.84 MAN. ONC MOCTOBON Weresobetonnois CTOREYOTALE CTAANS MACCA MACHTAE Условня применимости марок сталей BROODE ABTOLOPOWHER MOCTOR C APPACTANLL LO 33M & CERCH SCHOOLEX CM. HQ CTD.8 there AucT63 AUCTO8 гами.пр Кузнецов Рук.бриг. Кропп Провер Клейменова **C**πειμφυκαιμα υ βειδορκ COMBLOPTIPOEKT COMATYPO DUI CRELI PA35-6-1, 1435-8-1,2 1433-10-1,2; PA33-11-F. MOCKBA COCTAB LEANOC

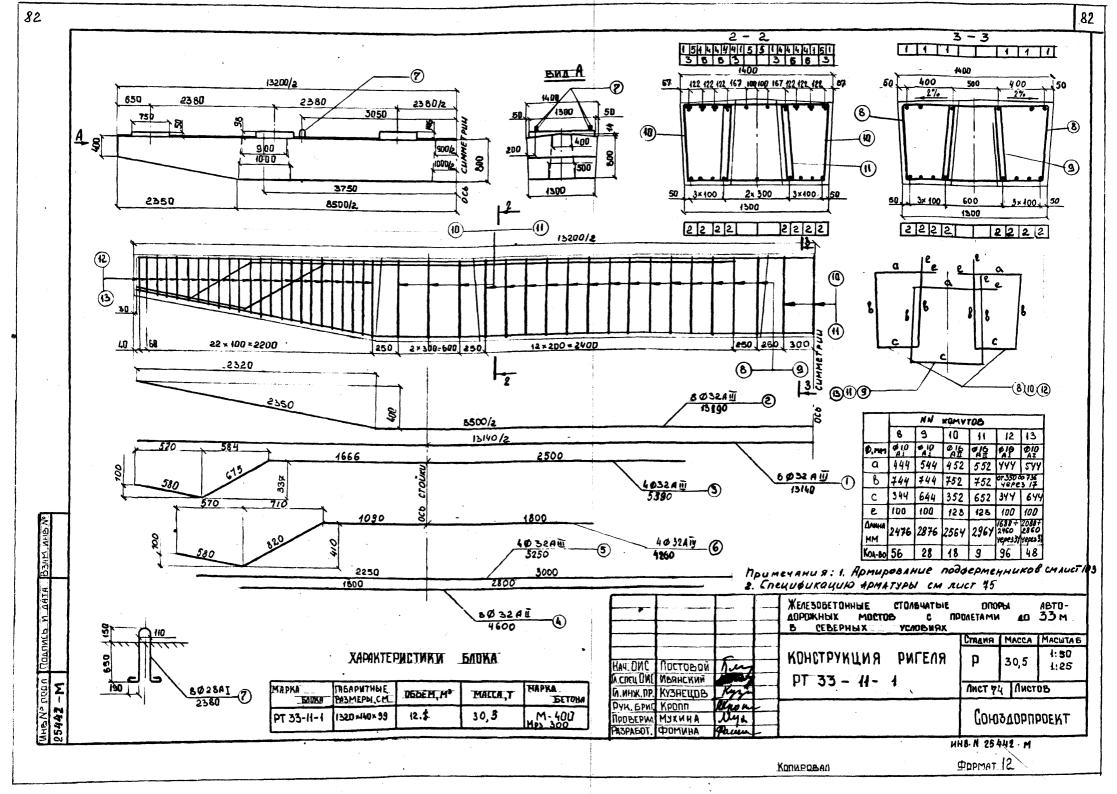

25442-M

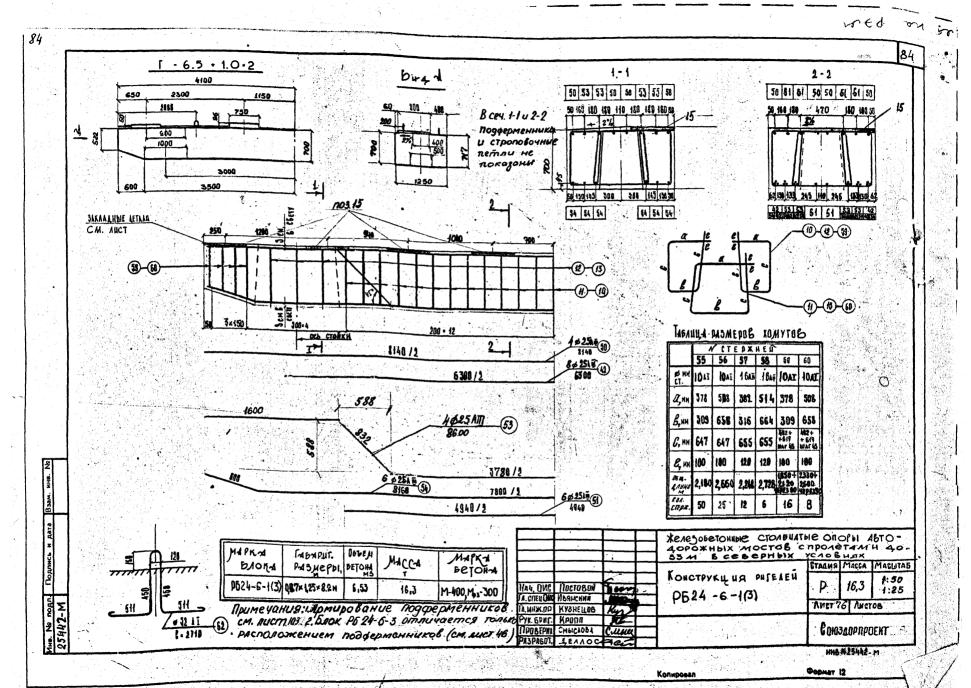




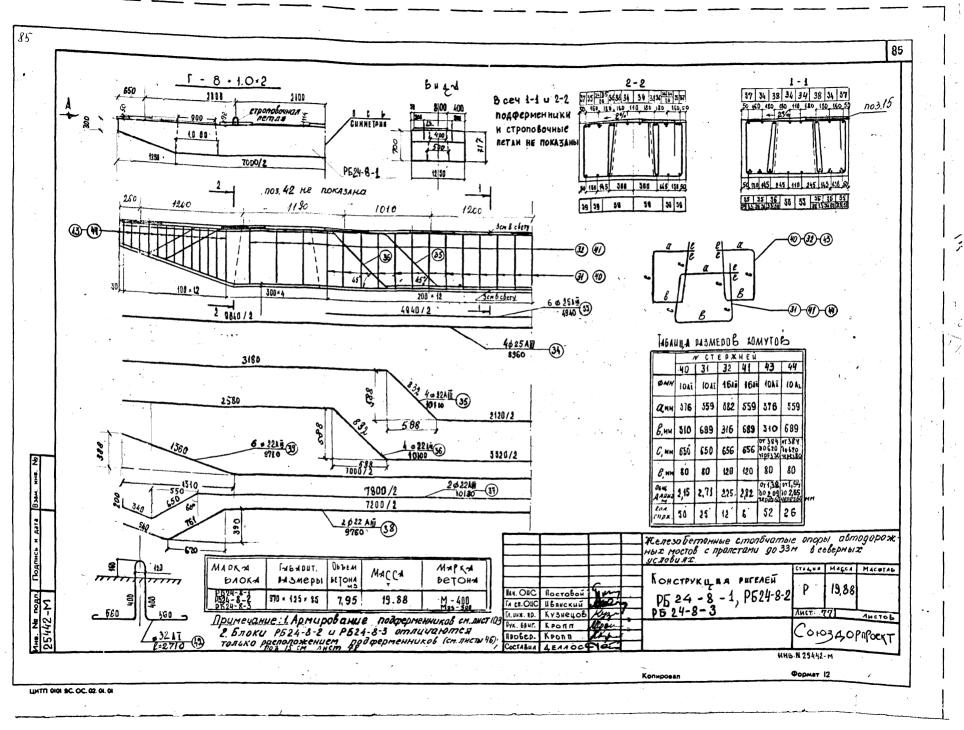

COPMAT 12

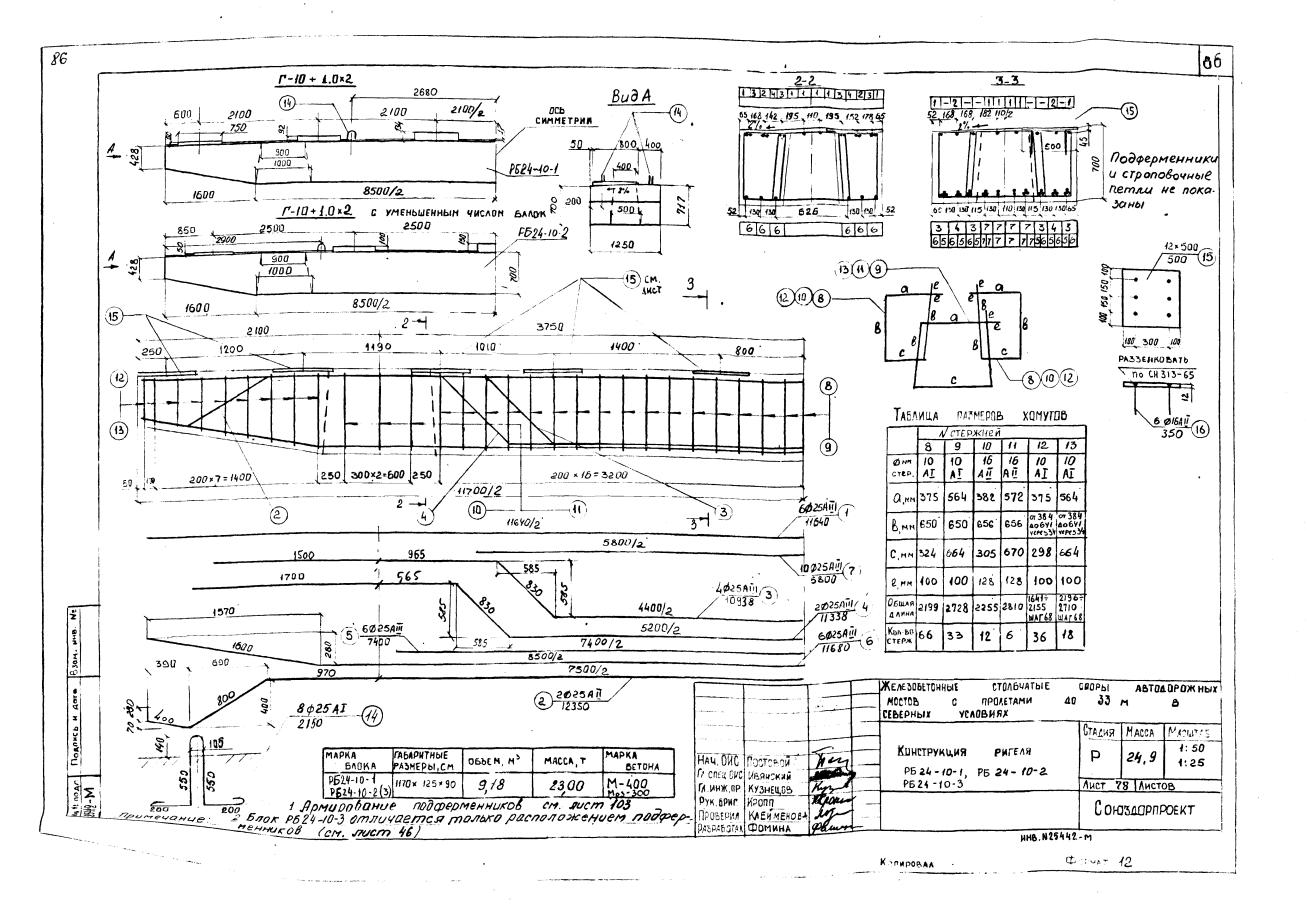

MAPK+ HON	C	2 2 2	z + +	a.			BENGOPE	C.A.	
	HOMEDA	AMETD H KA	TYN	Kon. Bo	DOWAR JANHA	LUMMETP	OBULLA AANHA	A Bec 1 n.m.	Общий вес
	позиций	4pMATYP6	I LET NM	}	Σ	Σ Σ	5	,	ř V
	I	W168	13/40	9	78.84	32.4777	186.26	6.3/	1175.30
	7	39.477	13200	0	79.20	1041	351.05	0.617	216.60
	~	32.477	5010	2	10,02	1641	66.37	1,58	104.86
DT 0/ 11 1/2	4	32 A III	7004	7	9,40	25 4I	17.20	3.85	66.22
61.11	5	324 III	0044	9	%. %0	ı		N To CO	1562.98
	9	10.4.	2206	56	123.54			AI BCT3CT	282,82
	7	1041	2684	28	75.15			4 W 1017	104,80
-	000	16 1111	2276	200	40.97	- 		72 103 mm	11/2026
	2	104.	77.07	2	25. 70				
1	?;	1007	7871	70	73.63			- :	~
Ļ	12	25.47	27.77) ~	17.20	-			
	53	2511	8160	8	65.28	254回	118.4	3.85	
	14	25.4111	\$200	ဖ	49.20	1017	205.56	0.617	1
1794.6.1(3)	15	251111	1960	2	3,92	16 4 8	105, 12	1.58	166,03
	9/	10 11	2150	44	94.60	32AI	10,84	6.31	
	//	1101	000	22	36.36			MIGE	
1_	19	11 31	0000	10	30.00			11001011	
	50	101	1000	16	24.00	-		ATTOCK	
	21	10 47	2520	8	20.06	T		79 77 77	
	22	3247	2710	7	10.84				
L	24	32.47	01176	3	22 60	2012	110 00	163	10 3 63
	25	25 4 117	9760	9	58,56	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20,00	2002	1
	76	32.411	4230	H	16.92	1011		2,00	02 016
	27	95 ATT	1960	6	3 00	1617		2014	1
17-24-8-113	28	32.477	4020	7	16.08	4014		1,78	1
	53	3247	2710	7	10.84	1691		07070	
	30	THOY	2147	52	111.64	-		118033011	
	31	1047	1691	26	59.97	1		AW 1057	L
1	52	IF 47	2235	18	40,23	-	•	A 11 25 F 9 C	813,75
1	25	10.41	2779	9	25,01				L
1	24	1401	1862	52	96.82				
-	S	1047	2406	92	62.56			-	
_	36	32 ATT	0968	9	53,76	321111	89.68	189	534.33
	37	25 A M	1960	2	3.92	25 AW	57.77	3.85	922.43
	38	3247	2660	7	1971	1047	06 492	2120	14 531
	39	05.17	2400		52 94	477/	16 16	1.50	109 95
L	27	E 102	0607	7	1000	2017	1	6.27	1
Mah. O. O	27	377	4000	7	10.00	36.11	Ì	10'0	1
1	101	22.41	7110	,	70,07	c.	,	מוסות	1
_	7,4	IVOI	2200	hh	96,80	-		AI BCT3CII	1
-]	43	1011	2650	25	58,30			All 10rT	
_	44	16 4 11	2260	18	89'04			4 IT 2512C	456.7
	45	16 41	2720	8	24.48				
_	94	TPOI	1880	36	67.68				
	44	1047	2340	18	42.12				-
	84	324 TT	04911	4	46.56	32 A III	149.02	6.31	940.30
	64	25 A TII	11680	9	70.08	25.4111	84 SL	286	290,60
	20	39.411	5335	7	11.34	1047	493.88	2130	261.55
MT0/. In. 1	51	32 411	5070	16	81.12	16.45	3/1 53	100	201 43
	52	25 4 111	2700	6	5.40	25.47	17.20	2 85	66. 22
DT24-10-2	53	1017	8118	19	127 47			MIOTO	1662.08
	24	1401	9738	33	87.62			AT BCT 3CA	327.75
5 5-01-47 17	55	16 41	2228	18/	40,10			A\$ 10/7	105.43
Ľ	26	41 31	8180	0	25.26			AM SETOF	1930 00
	57	1017	7181	77	40 04			77//7	10000
	5.8	1101	11011	29.	70 00				
	000	740	1017	36	17.07				
,	2	25A1	. 0417	*					

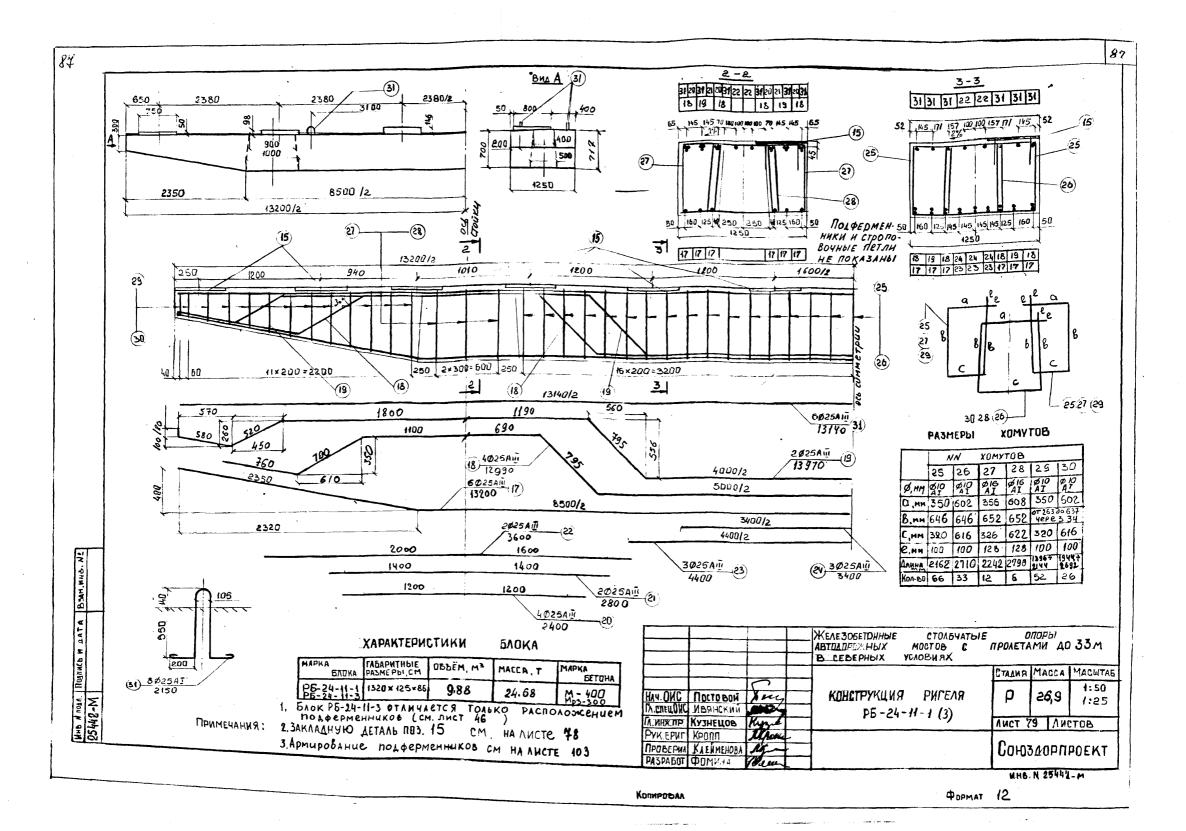

AUCTA NA VACEA MACIO	Colost Or Dock T
Decresoberomore cronsvarue angue CTALMS 'MELE MAELE BO 33m 6 retemus genabuss haris a Aurro I	Greywgurayus u bubopra apmamypol pusesed PT2Y
	Cacte Bug Recinition In

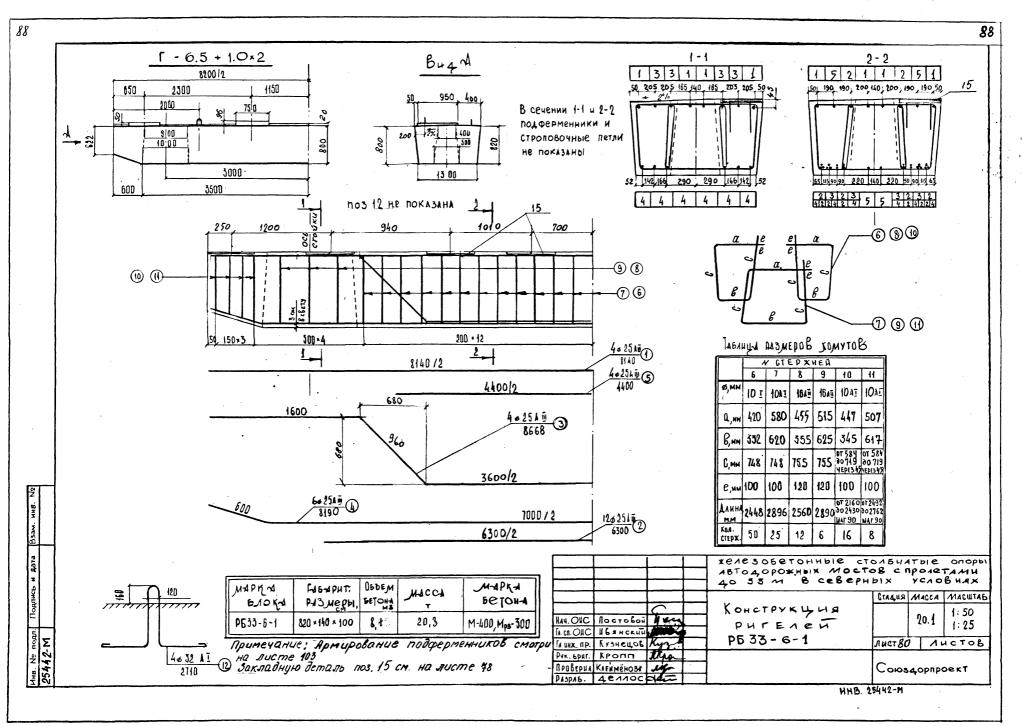


		пециф					BUEOP	KA	1
•	1	Диаметри класс	ANNA 1mt	KON-80	LANNA RAMAO	ANAMETP	AHHAL RAMBO	BEC 1 n.m	Общий вес
IOKA :	позиций	Арматуры	мм		§M	мм	M		
	1	32 A 🗉	13140	6	78,84	32 A III	280.75	6.31	Kr.
•	2	32 AII	13190	8	105.52	10 A I	537.04	0.617	1771.53
	3	32 A里	5390	4	21.55	16 4 1	72.83	1. 58	331.35
	4	32 AII	4600	8	36,80	1 88 A I	19.04	4.83	91. 96
33-11-1	5	32 A 🛮	5250 4260	4	21.00			Итого	2309.91
	8	32 A III	2476	56	17.04	4		BTOM YHERE:	
	9	IOAI	2876	28	138.66	11		AIBCT3CN	423.31
	10	16 AI	2564	18	80.53 46.15	1	1	AI 1017	115.07
	11	I6 AII	2964	9	26.68		, ,	ATT 2512C	1771, 53
	12	IAOF	2074	96	199.10	1			
	13	IAOI	2474	48	118.75	H			
	1	28 A I	2380	8	19.04				
	14	32 AII	11640	6	69.84	32 A E	232.82	6.31	1469.09
	15	32 A W	11690 4500	- 6	70.14	IAOF	506.28	0.617	312.37
	17	32 AM 32 AM	4180	12	54.00	16 A II	72.83	1.58	115.07
	18	32 AIT	2700	2	33. 44 5. 40	TASS	19.04	4,83	91, 96
33-10-1	20	10 AI	2484	72	178.85			Итого	1988, 49
	- 27	10 AI	2884 2564	36	103.82			AIBCT3CR	404.33
33-10-2	23	16 11	2964	18 9	46.15			AI BC+3 cm	115.07
	24	IAOL	2196	64	26,68			AD 2512C	1469.09
	25 26	IAOI	2596	32	83.07				
	26	28 A T	2380	8	19.04				
	28	28 AM 28 AM	8940 89 9 0	6	53.64	28AW	173,04	4, 83	835.78
		28 A	1960	6	35.96	IAOI	308.76	0.617	190.50
	29	28 AM	4320	4	11, 76 17, 28	16 AT	72.18	1.58	114.04
33-8-9	32	28 A M	3400	16	54.40	32 AT	10.84	6.31	68,40
	33	10 AI	2460	44	108.24			BTOM YHEAR:	1208.72
	34	10 AI	2860	22	62.92			AI BCT3CR	258,90
	35	16 AT	2540 2940	18	45.72			41 10 PT	114,04
	37	TAOF	2160	9	26.46		1 2 2	ATT 25 C2C	835.78
	38	TOAT	2560	20	86.40				
Jan. 51	39	32 AT	2710	4	51.20 10.84				
	41	-28AM	8140	8	65.12	28 A M	118.18	(, 82	570.81
		28 A匝	1960	2		10 41	216, 28	4.83 0,617	133,44
	44	28 A E 32 A E	8190 2710	6	3.92 49.14	16 A II	72, 93 10, 84	1.58	115.23
T33-6-	46	IAOI	2485	40	10.84	32 AT	10, 84	6.31	68.40
5	47	10 AI_	2930	20	99.4O 58.60			HTO TO	887.88
	48	16 A R	2603	18	46.85		l ti	I BCT3CR	201.84
	49	16 AI	2898	g	26.08			I 10rt	115.23
	50	IOAI	2320	16	37.12			M 25/2C	570.81
	51	10 AI 28 AM	2645	- 8	21.16				
	58	28 AU 28 AU	9640 9760	6	57.84	28 ATT	188.4	4,83	909.97
•	59	28 A W	1960	4	39.04	1011	355. Y	0.617	219.28
	60	28AD	4520	<u> </u>	11. 76	16 A <u>T</u>	72.18	1.58	114.04
	61	28411	4330	4	18.08	32 AI	10.84	6.31	68.40
T33-8-	62	28 4Ⅲ	3700	12	17,32 44.40			BTOM YHEAE	1311.69
•	63	10 A I	2460	44	108.24			I BCT3 CT2	297.68
	64	10 AT	2860	22	62.92	1		FE fort	114.64
	65	16 AT	2540	18	45,72			1 25 r 2C	909.97
	66	16 41	2340	59	26.46				
	67	IAOL	2060	56	115.36	11.54			*
	68	IAOL	2460	28	68.88	•		1	
	69	32AT	27/0	4	10.84				
	1				Условия прим			CM. HO BACT	Q

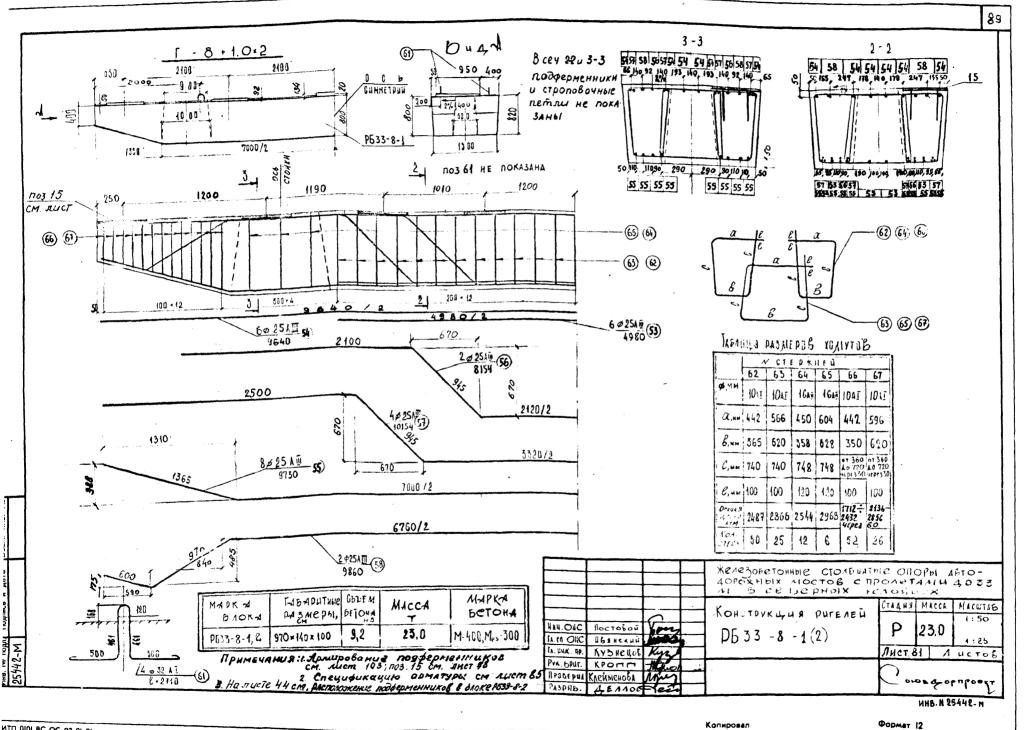

HAY. OHC TOCTOBOÚ 100-TALA. OUC MBAHLKHÁ TALH. NP KYSHELOB FYS PYK. 5PM KPONN TPOBEP. KPONN TOCTABUN KRÉMENDA 11

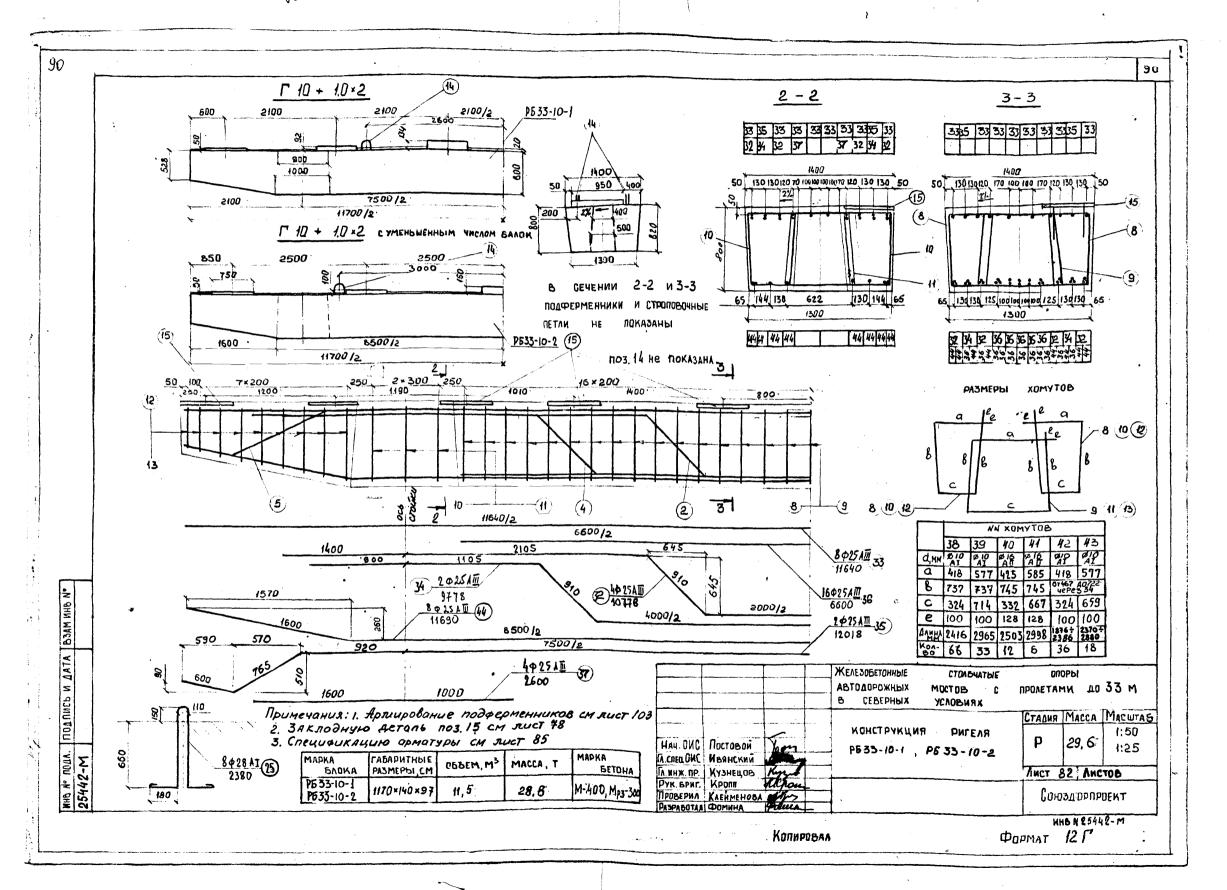

THE CRESOBETENHALE CTASSUATEDE AND CTARUR MACCA MICLIAL POL ASTODOPONIHOLI MACTOS C APARE.
TAMA 80 334 S CESEPHOLI YLAGOUSK. JULT 75 JULTOS Спецификация и выборка Союздорпроект

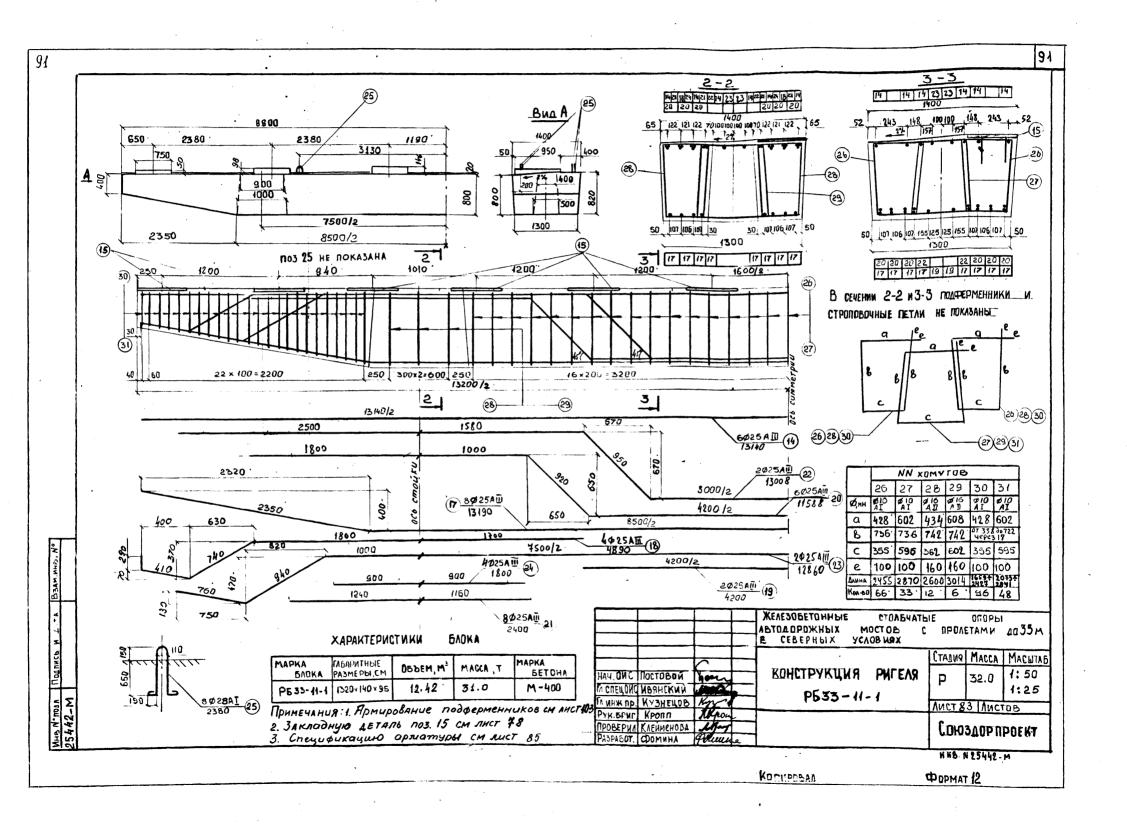

AUCT 75 AUCTOB Г. Москва инв N25492-м



LINTTO 0101 BC. OC. 02. 01. 01







(.

106

20	-
7	š

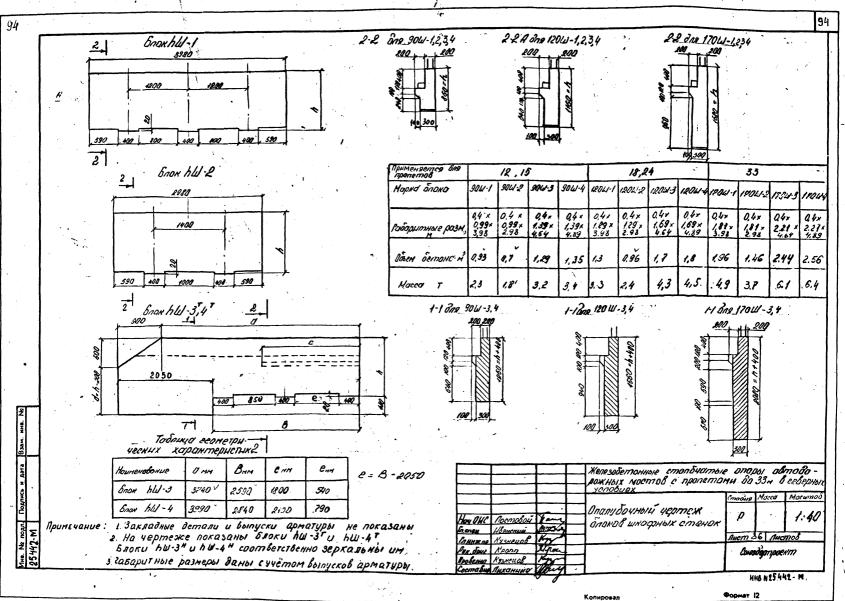
	Спе	цифик	+449						
MAPKA	HOMEPA	LHAMETP H KALCO	LANHA	KOA-80	AHHA RAMAO	ANAMETP		P.K.	
Brok#	Позиций	HOMETEMOR	I WI HM	1/04-80	М	мм	РЕЩАЯ АНИАД	Bec 1 n.M	Общий ве
	1	25 A III	11640	6	69.84	25 A TI	M	Kr	Kr
ا در ده	2	25人耳	12350	2	24.70	IAOL	333,45	3.85	1283.78
524-10-1	L	25 A III	10938	4	43.75	16 1	347.63	0.617	214, 48
(2,3)	4	. 25 AM	14 3 3 8	2	22.68	25 A I	64.92	1. 58	102. 57
	5	25 A MI	7400	6	44.40	-12×500	17.20	3.85	66. 22
	6	'25 A <u>II</u>	11 680	6	70.08	1	5,00	47.10	235, 50
	7	2.5 A.II	5800	10	58.00			Итого	1902,55
	8	10 41	2199	66	145.13	_1		AI BCT3 CT2	280.70 102,57
	9	10 AI	2718	33	90.02	1		A III 25 12 C	1283.78
-	10	16 11	2255 2810	12	27.06			RAGOSOLON	235,50
	11	1641	1898	36	16.86 68.33			THORUGAL.	1 207,70
	12	IAOI	2453	18	44.15	-1		¥	
7	13	25AT	2150	8-	17.20				
	34 15	-12×500	500	10	5.00			4º	
	(10w1) 16	16 A.IT	350	60	21.00			1	
	31	25 🗚 🔟	13140	6	78.84	25 A D	283.74	3.85	1092,40
	17	25 A II	13200	6	79.20	1011	384.43	0.617	237, 19
	18	25 A 🔟		4	51.96	16 11	68.84	1.58	108.77
· •	20	25 ₺∏	13970	2	27.94	25 A I	17.20	3, 85	66. 22
f	21	25 ⋏∭	2400	4	9,60	-12×500	6.00	47.10	282.60
P524-11-1	22	25 AIII 25 AIII	3600		5.60		1	Итого	1787.18
1		25 A III	4400	3	13.20	-		AT BCT3CT 2	303.41
P524-11-3	24	25 AII	3400	3	10.20	4		AD 10FT	108. 77
	25	10 AI	2162	66	142.69	-		A III 25 Г2С	1092.40
1	26	10 Å1	2710	33	89.43			RABOJOAOR	282.60
	27	16 AII	2242	12	26.90	1 .			.
[28	16 AI	2790	6	16.74	1			
j	29	10 A I	1770	52	92.04	1			
- 1	30	1041	2318	26	60.27				
- 1	14	25 A I	2150	88	17.20				
ŀ	34 15	-12 - 500	500	12	6.00				•
	(12Wr) 16	16 A II	350	72	25.20		1		
+	33	22 AR	4840	6	29.64	22 A Tii	244.32	2.98	728.07
ł	34	22 + 11	8960	4	35.84	IAOI	325.14	0.617	200. 61
P524-8-11	35	22+Ⅲ	10100	4	40.40	16 A II	62.82	1. 58	99. 26
	36	22 ★Ⅲ	10100	4	40.40	32 A I	10.84	6.31	68, 40
D524-8- 2	37	22 AII	10130	2	20.26	- 12×500	4.50	47.10	211. 95
}	38	22 A 🗓	9760	2	19.52			Итого	1308.29
P524-8-3	39	22 A 🎹	9710	6	58.26	4 .		AI BCT3CM2	269.01
,	70	IOAI	2150	50 25	107.50	-		AT 10 PT	99. 26
ŀ	31	10 t I	2250	12	67.75	4		ATI 2572C	728.07
†	41	16 A II	2820	. 6	27,00 16, 92	4		NONOCOBAR	211.95
. †	43	16 11	1735	52	90.22	-		1	
ľ	73	104I 140l	2295	26	59.67		4.5		
T I	44	32 A T	2710	4		-			
ľ		-12 × 500	500	9	10.84				
	3A 15 (9Wr) 16	16 A L	350	54	18.90	+1 .			14
	50	25 1 1	8140	4	32.56	25 A 🗊	105.00		
- t	51	25 A III	4940	6	29.64	IOAI	195.96	3.85	754.4
· · · · · · · · · · · · · · · · · · ·	52	25 A M	6300	8	50.40	16 A I	226. 98	0.617	140.04
otol:	53	25 A III	8600	4	34,40	32 AI	60.15 10.84	1.58	95.04
1624.6-1	54	25 A TI	8160	6	48.96	- 12 × 500	4.00	6.31 47.10	68.40
624-6-3	55	IOAI	2180	50	109.00	1	7.00	HTOPO	188.40
	56	IOAI	2660	25	66.50	1		AI 8C73CM2	1246.3.
t	56 57	16 1	2248	12	26.98	#	. }	AII 10PT	95.0
t	58	16 A II	2728	6	16.37	#	ł	AM 2512C	754.4
r	59	10 AI	1985	16	31.76	#	· · · · · · · · · · · · · · · · · · ·	MONECOBAR	188.40
	73	IOAI	2465	8	19.72	1	•		+ , , , , , , ,
Γ	6/1								
F	60					1			
-	$\frac{60}{62}$	32 A I - 12 * 500	2710 500	4 8	10.84	1			•

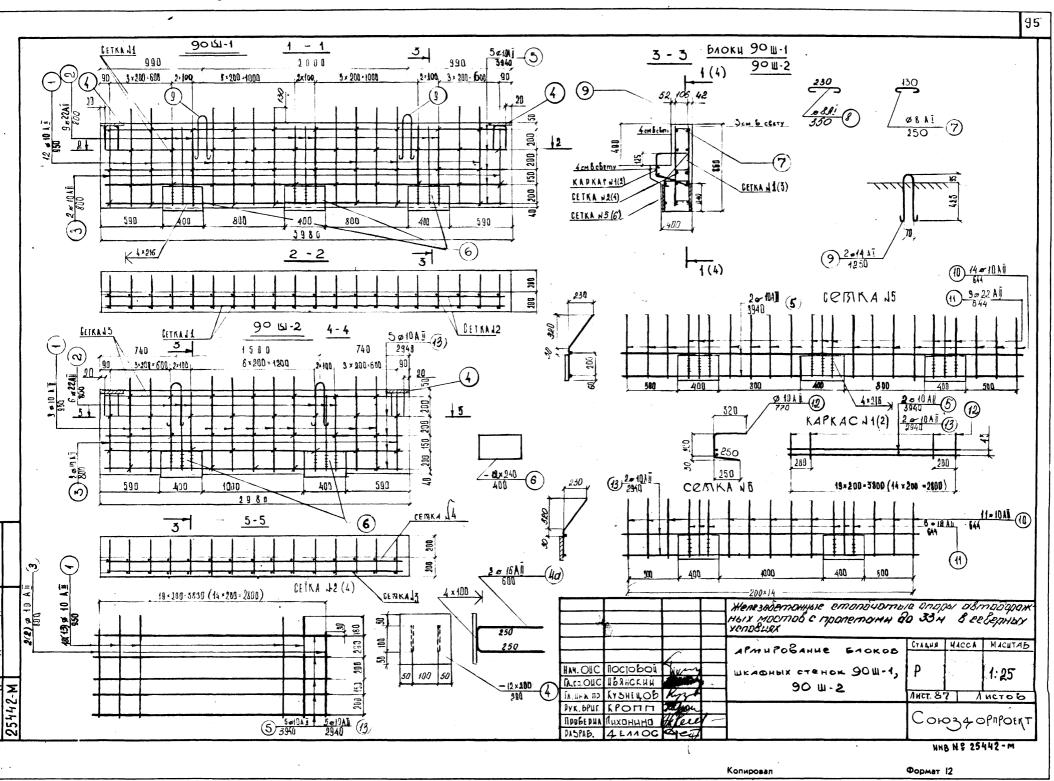
применения Марки стали см, на стр. 8

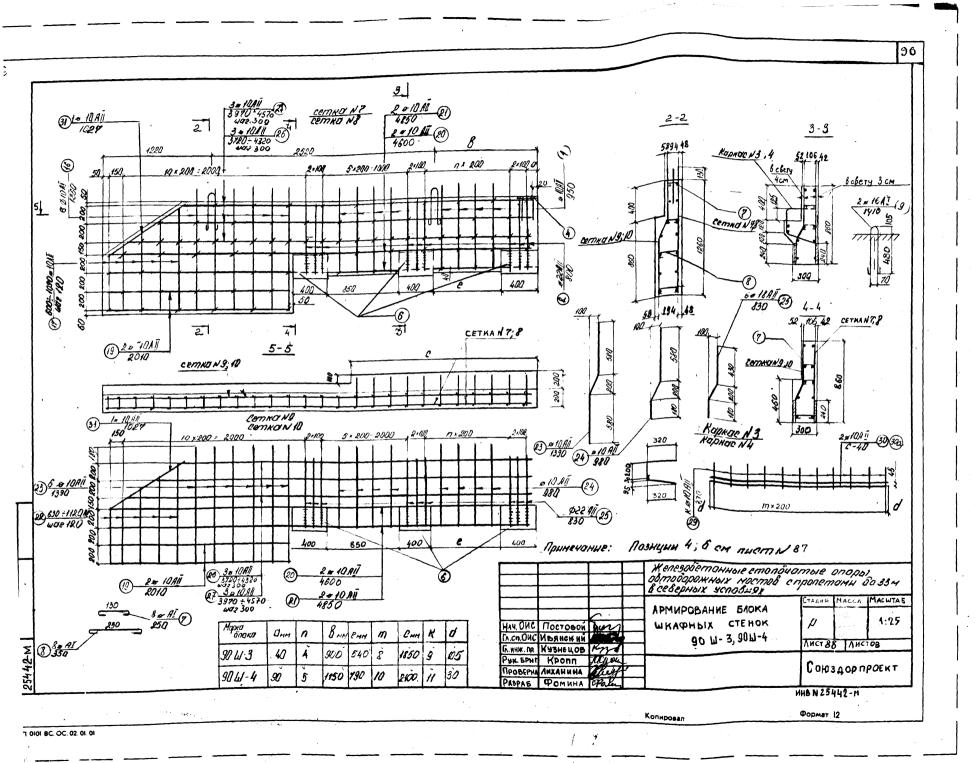
HAY. OHC	NocroBou	Han	Γ
TA.CA OHC	HBAHCKHH		
TA.UH. ND.	KYSHELLOB	Kyz	
PYK. SPAC	KPONA	Ma	
Провер.	Kponn	the-	
	KAPUMPHOR	THE	

Железоветонные стольчатые опоры СТАДНЯ МОССА МАСЛЬ вытодорожных мостов с пролетани до 33 м в северных условиях ЛИСТВУ ЛИСТОВ Спецификация и выборка арматуры ригелей Р624

AUCT 84 AUCTO8 COHOZA,OP NPOEKT г. Москва

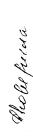

HH 8 N25442-M

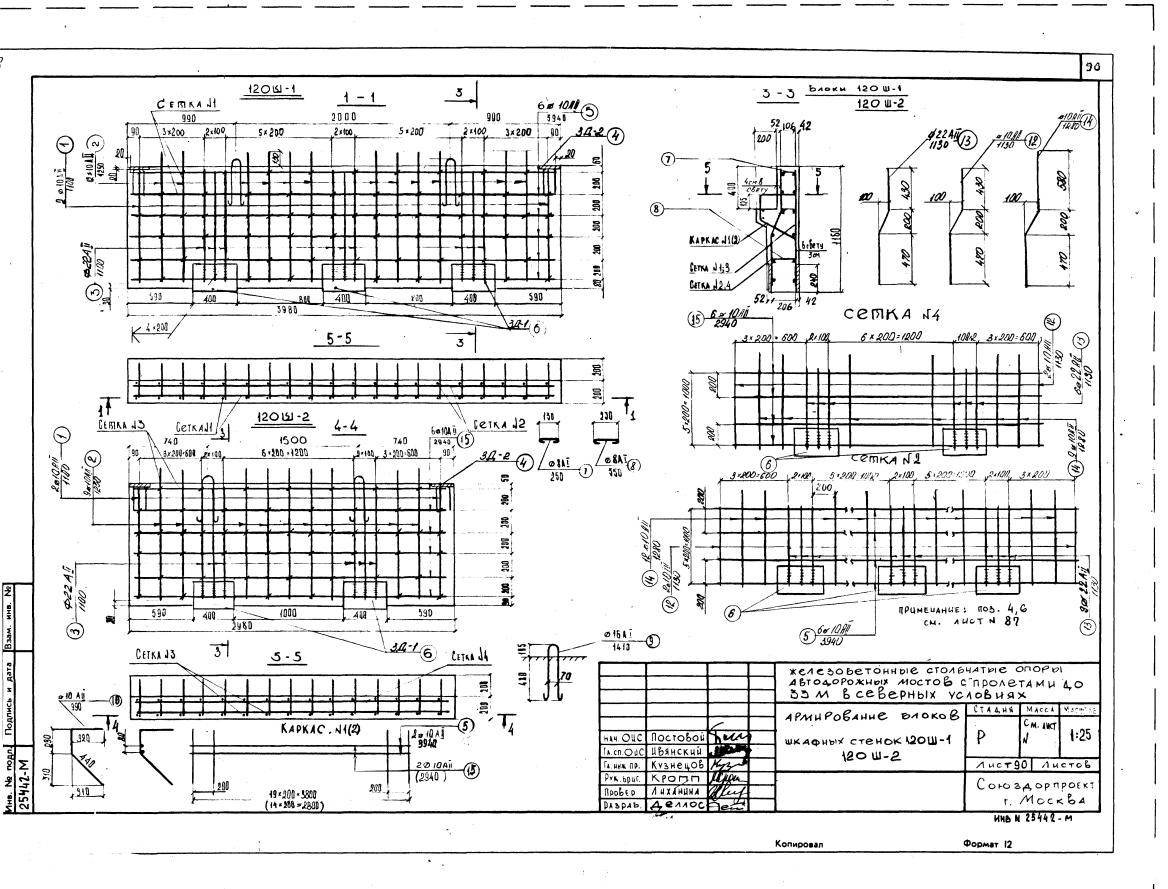

ζ	c	3
•	í	١.

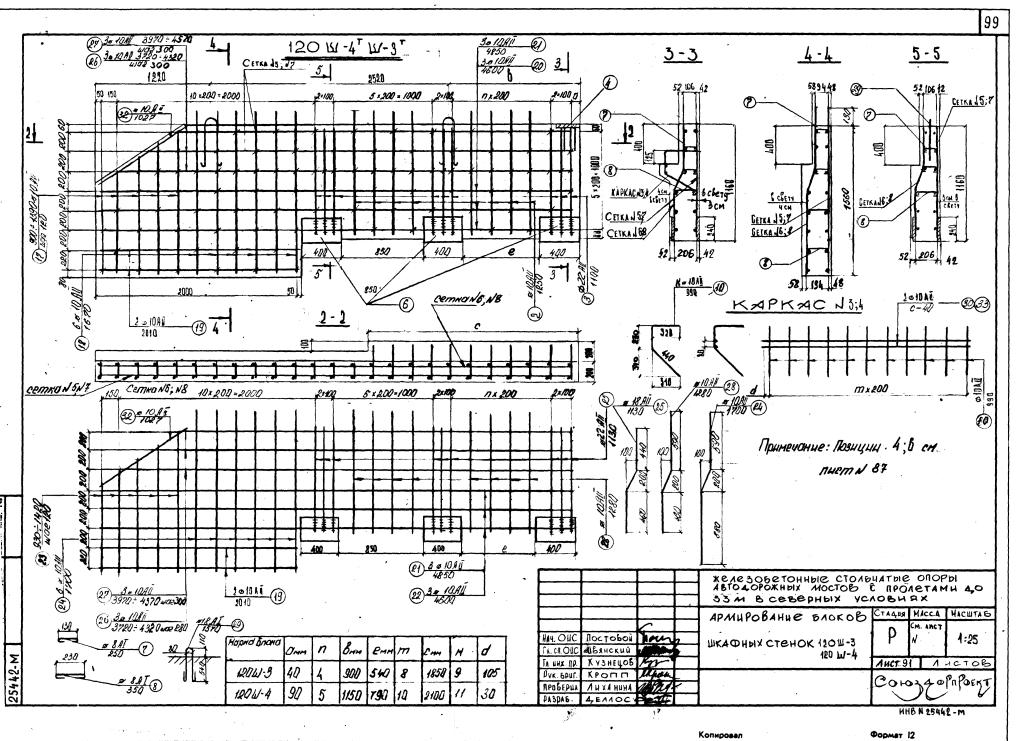

15442 - N		ЕЦИФИК	A II II S				Выбор	KA	
TAPKA	HOMERA	AHAMETP MM		Ī	Общая	ANAMETP	РЕМИВО	Вес 1 п.м	Общий ве
	1	M KAACC APMA	1	KOA-BO .	AANHA, M	ММ	AHHA	Kr	1
		TYPH			32.55	25 A III	209.56	3,85	806.81
	1 2	2.5 AII	6300	12	75.60	10 N I	252.56	0.617	155.83
	3	25 AM 25 AM	8668	4	34.67	164I	64.86	1.58	102,48
	4	25 A III	8190	6	49.14	3211	10.84	6.31	68.40
C 33.0		25 A III	4400	4	17.60	- 12×500	4.00	47.10 HTOTO	188.40
6 33-6		IAOF	2448	50	122.40		<u> </u>	Al Bors on	1324,92 224.23
1	7	10 11	2896	25	72, 40 30, 72	ì		A I fort	102,48
	8	16 AII	2560 2890	6	17. 34			ATI 25 [2 C	806.11
	10	16 AT	2296	16	36.74			MANASI RABOSONOR	188.40
	11	IOAI	2628	8	21.02	Į.			•
	12	32 AI	2710	4	10.84				
	3, 15	- 12 × 500	500	8	4.00	4-			
	(Eury 16	16 A JI	350	48	16.80	25 A W	359,99	3.85	1385.96
	17	25 A III	13140	8	78.84 105,52	10 4 1	571, 38	0.617	352.54
	19	25 A II 25 A II	13190	4	19.56	16 AII	74.48	1. 58	117.68
533-11	19	25 Å III	4200	2	8.40	2841	19.04	4.83	91.96
1	20	25 A TO	11588	6	69 53	- 12 - 500	6.0	47.10 Итого	282.60 2230.74
1	21	25 A III	2400	8	19.20	-		AI BCT3CN	444.50
	22	25 AM	13008	2	25.72	1		AT IOPT	117.68
	23	25A III	12860	2 4	7. 20	1		AU 25 12C	
	26	25 ATI 10 AT	1800	66	162.03	1		NOVOCOBY IDXCHY	282,60
	27	10 11	2870	33	94.71	[15 N-1124	Y :
	28	16 ÅI	2600	12	31.20	†† †			
	29	16 AI	3014	6	18.08				
	30	IOAI	2047	96	196.51	#			
	31	IOAI	2461	48	19.04	i			
	25	28 A I	2380	8	6.0	†			1 - 100
	34 13 16	- 12×500	500 350	72	25. 2	1			
	32	25 A III	10778	4	43.11	25 A 🔟	389.35	3.85	1499.0
		25 A TU	11640	8	93.12	10 A I	381,33	0.617	235, 30
	34	25 ATL	9778	2	19.56	16 AII	69.03 19.04	1.58	109.07
	35	25 A III	12018	2	105.60	28 A I - 12×500	5,0	4.83	91.96
	36	25411	6600	16	10.40	- 12, 300	7.0	Итого	235.50 2170.83
D 33-10-1	38	25A III	2600	66	159.46		<u> </u>	AI Bet 3 cm	327. 26
₿33 - 10-2		IAOI	2965	33	97.85			AT 10 PT	109.07
,,,,	40	16 AI	2503	12	30.04			ATT 25 12C	1499.00
	41	16 A TT	2998	6_	17.99 76.75			HOLOCOBL A TOXCHA	1 235. 50
	43	1041	2132	36	47.27				
	44	25 4 111	11690	8	93, 52	£			
	25	28 A I	2380	8	19.04				
	34 15 16 16	-12 - 500	500	10	5, 00				
	53	16 ATT 25 ATT	350 4980	60	21.00 29.88	25 A III	242,21	3,85	932,51
	54	25 A TT	9640	6	57. 84	10 4 J	368.64	0.617	227.45
	55	25 ★Ⅲ	9730	8	77.84	16 A II	48.34	1. 58	76.38
	56	2.5 A III	8154	Ž 4	16, 31	32 A I	10.84	6.31	68.40
		25 4 1	10154		40. 62	-12 > 500	4.0	47.10	188.40
	57		9860	2	19. 72	 		NTO TO AIBCT3 CT	1493.14
P633-84	58	25 18		r_	י רר טוין			INTOLISM:	295.85
	58 62	IOAI	2427	50 25	124. 35 71. 65				76 20
	58 62	IAOI	2417 2866	25	114, 55 11, 65 30, 53			ATT 10 CT	76.38
	58 62 63 64 65	16 AT 10 AI	2487 2866 2544	25 12	71. 65 30. 53 47. 81			ATT 10 CT	76. 38 932. 51
P633-81 P633-8-2	58 62 63 64 65 66	10 AI TA DI TA DI TA DI	2487 2866 2544 2968 2077	25 12 6 52	71. 65 30. 53 47. 81 107. 74			ATT 10FT	76. 38 932. 51
	58 62 63 64 65 66 67	10 AT 10 AT 16 AT 10 AT 10 AT	2487 2866 2544 2968 2072 2496	25 12 6 52 26	71. 65 30. 53 47. 81 107. 74 64. 90			ATT 10 CT	76. 38 932. 51 188. 40
	58 62 63 64 65 66	10 AI TA DI TA DI TA DI	2487 2866 2544 2968 2072 2496 2710	25 12 6 52	71. 65 30. 53 47. 81 107. 74			ATT 10 CT	76.38 932.51

Условия применения марак сталей см. на стр. 8

железоветонные стольча Стация Массл Масштав тые опоры автооротиныя Массл Масштав местов в северном иеполне- Лист 85 Листав Спецификация и выборка Союз орпроект арматуры ригелей РБ 93 г. Моска в HAY. OHE POCTOBON POC

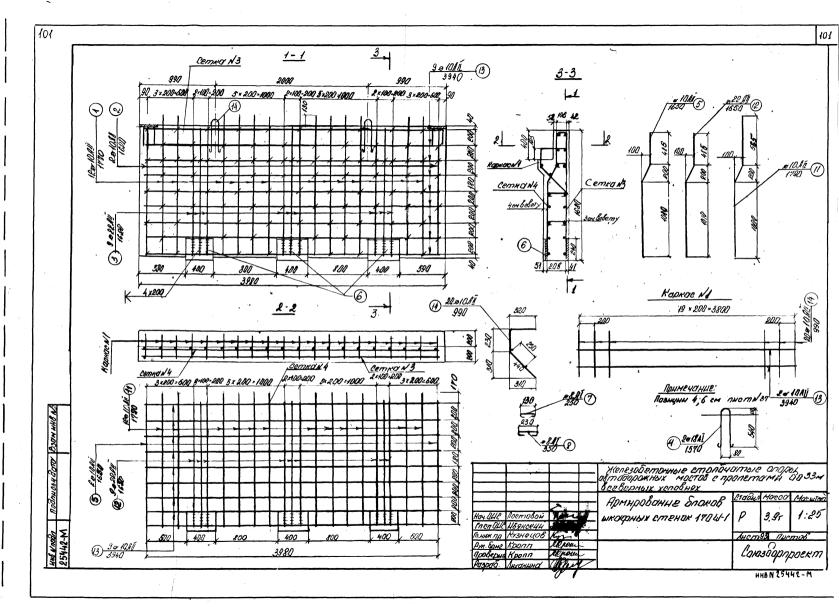


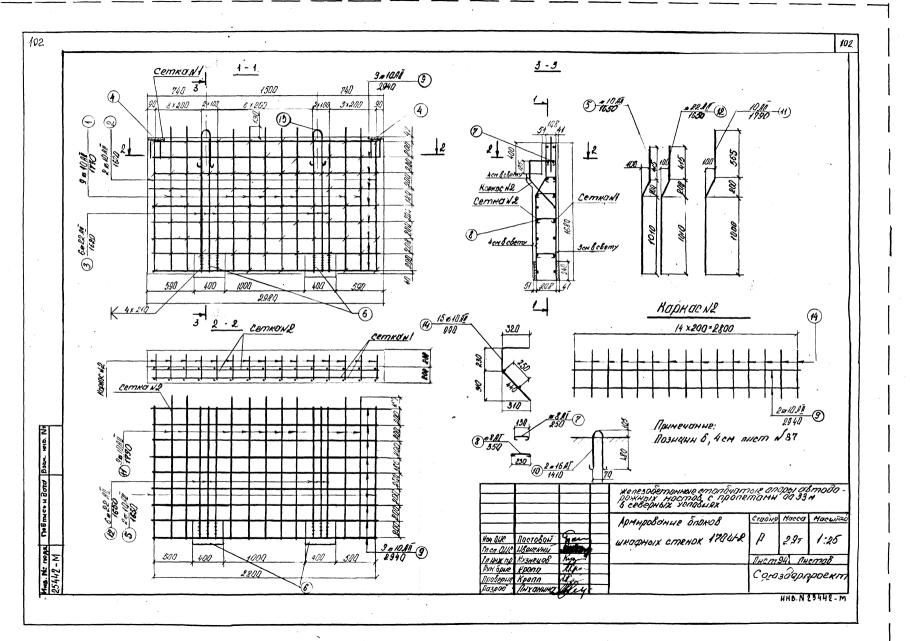


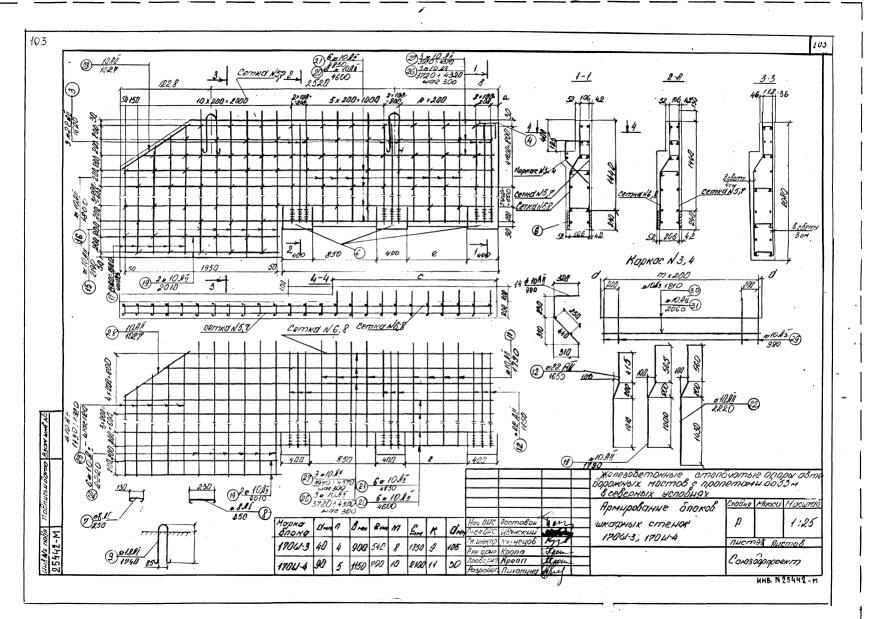


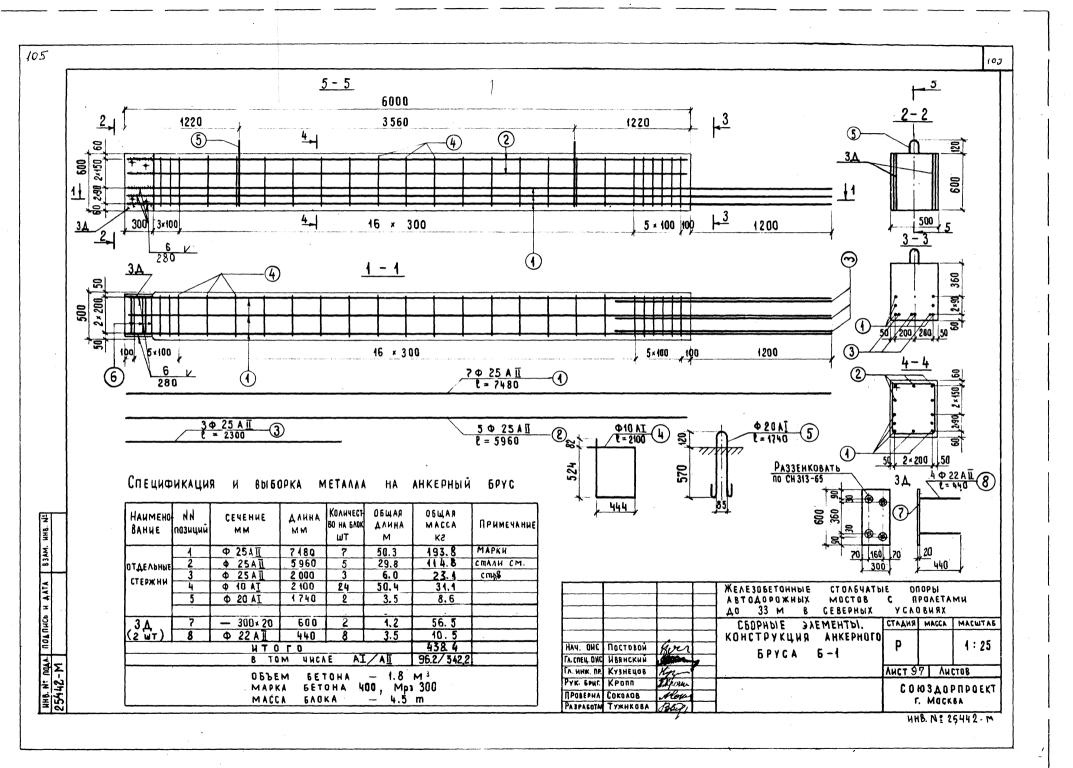
	Cneuud	HRQUU	g 5e3.	BOKNOF	Marie	2	وين دوور وسنسب					
Морна	Ноименовони		DHOMEMA	RAUNO	HOLK Z	iemo	11911		BO180 Quarretp	DAKO		
מאסחל	BARMEHITA	- 1		Ht.	Manue	ecrbo	Poyor	Grune	LHOMETO	Doug	Becinn	DOUSLIL
,,,o,,-G	Sierieni i O	Justily.	HM	1 .	Sherren!		40	Ha	MM	SALLINO M	ne.	Bee Me
	Cemka NI		010.16	950	12	500x 12	Marketer	DOOK		1	7.5	j
		1 3	A PORT	100	9	0	11,4	11.4	D 10.81	111,3	0.617	68.7
		5	01013	3940	12	يو ج	1.6	1.6	028 A.H	13.0	2.98	38.0
	CEMKO NE	1	# 10 A #	950	18	5	19.7	19.7	0841		0,395	16,4
	CEMINO STE	2	0 10 A1	800	P	18	121	171	0 14.11	25	1,21	3,0
	CEMNON5	5	0 10 AT	3940	15	5	10,7	1.6	# 16 A 1	24	1.58	3,8
1041	(6,7,11,0 42 0	10	a 105	644	12	2	7.9	7.9	1	Bmom	All 10rr	1325
		12	6 20 Ar	644	9	9	9.0	20	1	HUCKE	A18013002	111.2
	KODKOC NI	5	# 10AT	3940	20	20	15.4	5.8	304008		nany:34.1-	
	Omoenowe come	- 7	+ 8A1		40	2	7.9	7.9	34.1-12.240	2,4	101711 .VIL 1-	34
	Cmp on of our sie nem	18	0891	350	170	40	10	10	34.2.121200	0.4	18.7 XCHAT) NO POL Br 80H 155-69	7.5
	70	+ 3	# 14 AI	1250	Ié	13-	2.5	25	100 201A	100KHQ;15.	XCHAT) no roc	61.5
		2	0 10 A T	800	2	9	8,6	8.6	19281-13 05	HEMONY NE	8 r BCH 155 69	07,0
	Cemro 13	3	010HI	800	6	6	4.8	4,8	0 10A1	84.7	2.98	25,9
		13	0 141	2940	3	R	116	1.6	* RAI	12.1	0.395	4,8
_	Damuer ale	1	+10811	950	13	13	14.7	14.7	a 14A 5	2,5	1.21	3,0
041.2	CEMKON4	13	# 10 A II	800	5	0	1.6	1.6	- 1681	2.4	1,58	3.8
	Dam 41.	1 10	*10AI	2940		3	14.7	14.7		Umo	250·	81,6
	CEMMONE		+22A# +10A2	644	16	1/	2.1	7.1		OM	SI 10 PT	23.8
	<u> </u>	13		2940	10	8	3.9	3.9	HUCK		AI Ber Bene	7,8
	KOPKOC NE	12	e 10AE	770		15	11.6	5,9			emonn:34-1-	MANAGE PERSONNEL PROPERTY AND ADDRESS OF THE PERSONNEL PROPERTY AND AD
	Ombenerare crep mu	12	010A B	250	e.	المح	5,9	5.0	34-13-12 1240	1,6	22,5	36
		8	08AI	350	30	30	7.5	100	34.2,121200	DAYAR: 15	18.7	2,5
	Строповойныелет	4 9	a 14AT	1250	13	13	4,6	46	IDPLECIA; PORT 19081. BON 155-6	P3 EXVERTIO	NC 114 1/10	43,5
	Cemko N7	16	01014	1860	6	8	2.5	25	B CH 133-6	(00 ====		
		17	· 10A"	845	5	5	4.2	4.2	= 10 A ! = 22 A =	102.76.	0,617	63,4
		2	22 AT	350	18	7	6.7	6.7	+ 8ST	21.7	0,396	8.6
141-3		26	* 10 A T	4020	3	9	7.2	7.2	e 16 AI	2,82	1.58	4.5
		20	9 10AD	4600	-	3		12.1	e 16 A :	1.2	1,58	19.0
	-		0 1081	2010	120-	2	9.2	9.0			Umoza:	1393
			0 10 A I	1027	1	7	1.03	103			AU IOPT	126,2
	CEMHON 9		+ 10.8 II	1390		5	4.4	4.4			As BerBene	13,1
)		0 10 AF	980	6	6	8.3	8.3	3000000		1014:34-1-60	wi; 34.2-1 w
		R5	022 AT	830	3	9	6.9	6.9	3A-1; -42 × 240	2.4	22.5	54
		26	# 10SE	4020	3	3	121	7,5	30-2;-12 x 200	0.2	18.7	9.4
		20	0 10 AF	4600	ام	2	6,2	9,2				63.4
		19	+1085 +108T	2010	1	~	410	1.0	101.5 014			00.7
1	KOPNOC N3	29	+ 10AT	870	1	1	1,03	1.03	no POCT			
_		30	010AI	1810	2	9	7.8		YYEMOH I	BI BUH-	130-07	
	OM GENERALIE		. 8AI	250		0	105	10.5				
	Строповочные пет	9	+ 8 AI	1410	30	32	11,2	112				,
	,	16	# 10 AT	1360	8	e 1	2,82	2.82	10.82	17.6. 8		0/0
	CemkoN8		01081	845	5	6	8.2	8.2	2005	147,5	0,617	91.0
041-4			0101i	950	P	8	7.6	7.6	22 A II	14.7 R2.6	0,396	9,0
UW-4		27	+10A F	800	2	9	7.2	7.2	# 16AI	2,8	1,58	4.4
	,	21	01044	4850	9	3	12.8	12.8	a 16AT	1,2	1,58	1.9
			# 1011	2010	2	2	9.7	9.7			Umoeo:	100,5
			# 10AH	1027	1	3	1,03	1.03	B MOM	4wane:	Si IOPT	136,7
		23	010AI	875	5	5	4.4	4.4			A. Bor 3002	13,4
	Cemko N10	24	4 10A !!	1390	1		026	011	3000	OBHOIR I	iemonu 34.	
		25	010 45		8	9	12,8	78	3A-1; 12x 240	2,4	22,5	54
		27	010.43	4270	9	3	12.8		3A-2; 12×200		18.7	9,4
		21	a 10 fi	2010	0	ع ا	9.7	97				
		19	~ 10.4 T	1000	0	•	9.7	9.7	101-2 CIA	-IDEXHA;	15xCHQ T)	63.4
	HODKOC N4	200	+ 10 AU	2060	2	é	1,03	203	na roet .	19281-73	C YYETOY	
	ambensmore -	19	# 10H5	250	11	77	9.6	9,5	n 180 BCH	155-69		
	CTPOROS APTRIL	8	0867	350	44	44	11	11				
		18	a le Al	350	33	33 L	11.6	11.6				
THUCKING TO	IA SEMONO 3A OA SEMONS	6	-12 x240	400	7	=	0,4		YCLOBIG BOI	именения	марок стал	eū
3	A.L	-	-12 x 200	600	1		02	=	CM. HO LE		jon cius	
	обность вз	MAN CO	1415	1000	R	- 7	12	\Box				
ממושל	OOK HO SOODA	1 /MHMM	אמוגר אמוד				4-4	Keneso	อียภาอหมธาย	ะ เกอกอื่น	ombie and	2001
	וואסטונים.	Linica)	704				4-4	omoo	OPONHOIX	HOEMOG E	nponemó	144 0000
man	7 1	1	1	 			1 6	cesep	HOIX YOU	DOUGX		
MOPRO	9041-1 904	2 9041-	3 904-4				4	neunq	DHNOGHA	u 60180px0	CTOTOUR ME	word Major
5 noe	4			Hav. Dila	77	1	4-4	pron	אסחס וטפער	100	1 1	l
1-1	6 4	6	6	Proce Di	Постовоц Иванский	Sar	/	INDIA	אלואר המפא	IDK		1
IJ-1	10 4	10	0			-	2	4041-	1, 90412,			10
2 -7 -	0 0	1	+	Burapus	RESMENOR	Ky	7 +		904-4	·	Muct 89	MACIOS
317, 2	2 2	1	1	Vengenua	PONN	77.4.	4				1 '	ואבסטוחמי
			ı	Cormak	ROONN MUXBHUH	My	7				e Mac	KEO
						ander						

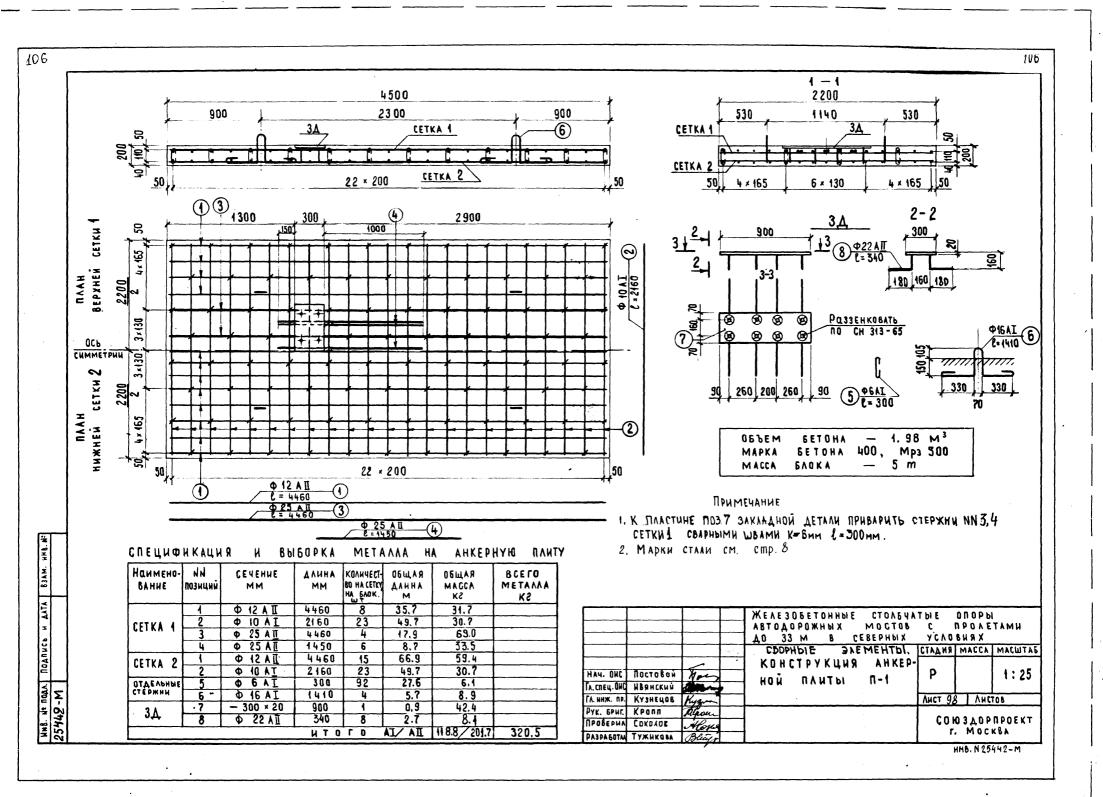
. .

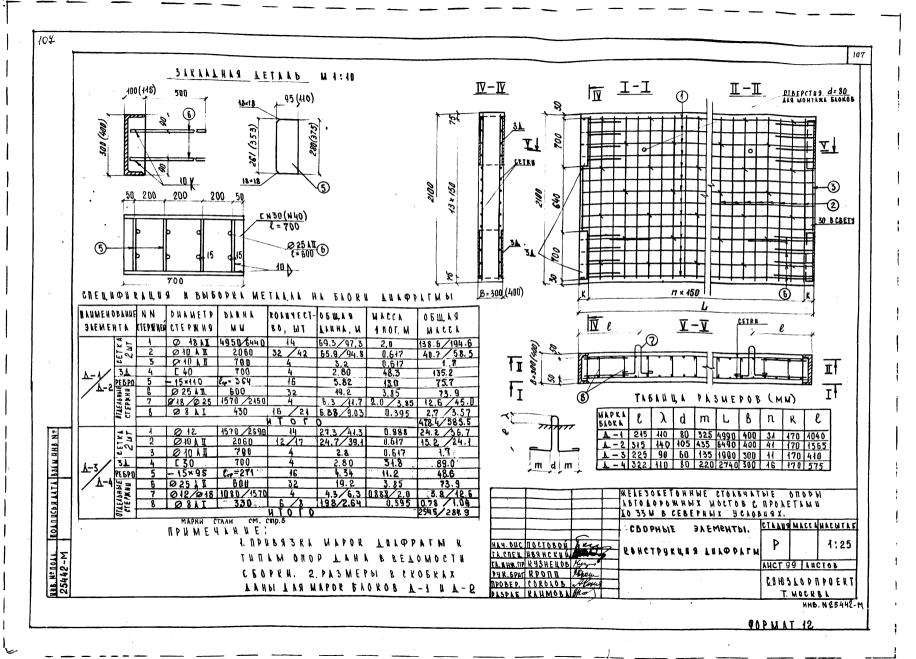


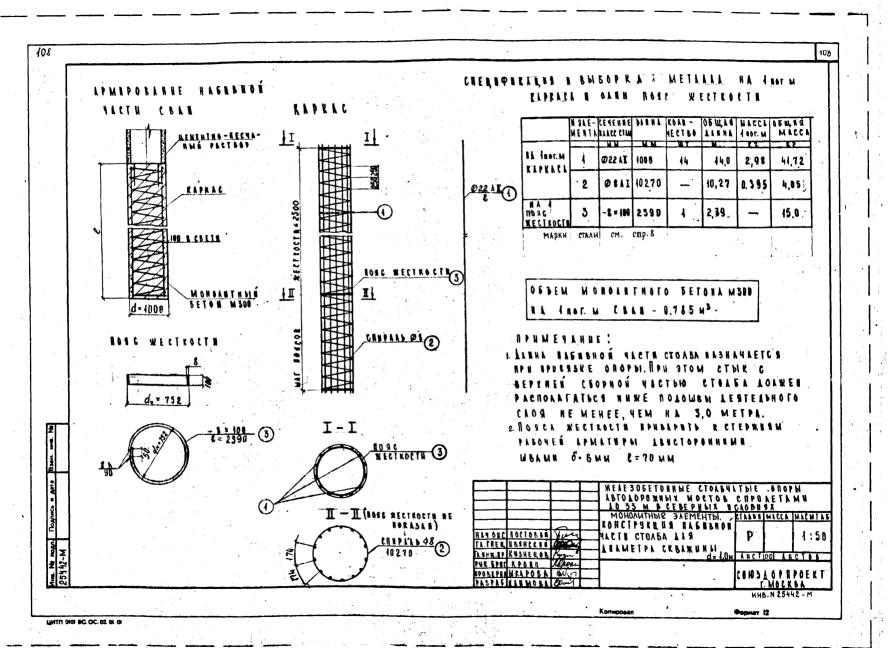


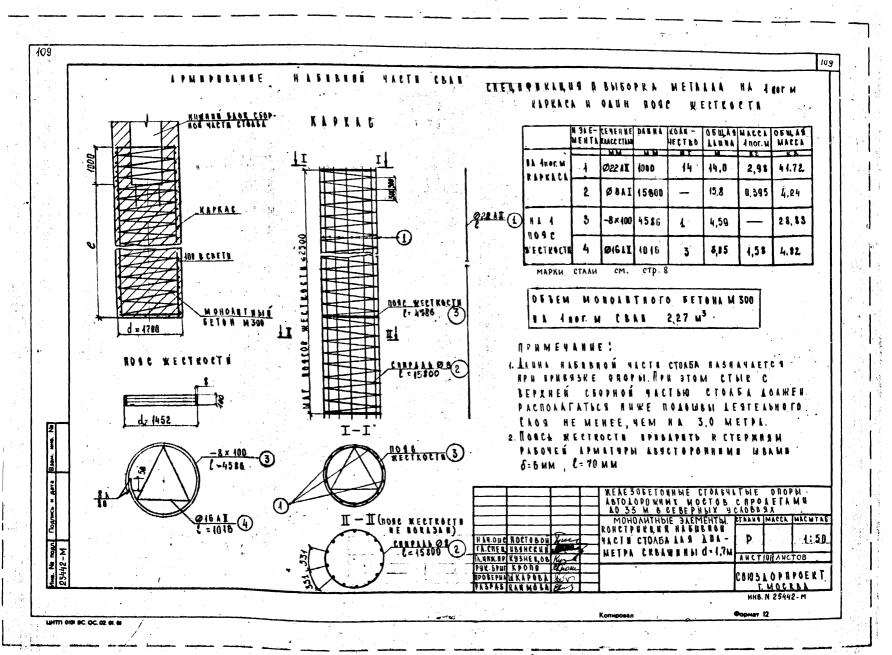

<i>(1<u>48 N; noói</u></i> 25442-N		u dame	P3OM H	161									
		25112	Se3 3	OKNOOM		2						-	
MOPKO	MUHMENO	USHUB	INN	1007	1 2	<u>oem</u>	nei	1000	-	Balogo			
noka	SARMBHIA	ωb	70344	AHOMETAR	14MMA				0.7446		05478	Berlan	05
			 		14/1/11/	HO	Onox	HO SOE	HO H	MM	Bound	Ke	DOGNIA
			13	# 101	1100	2	2	22	2.2	@10AU	109,8		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Cemka	NI	3	2 82 15	1100	12	12	15	15	B 22 8:	20,2	2.98	67,7
12041-1			10	· 10 A 1	3940	6	6	23.6	10	#8AL	120	9395	60.2
		. 110	14	· 10 h !!	1880	2	12	2.3	15.4	0 16 A I	2.4	458	6.7
	CENTRO	SVR	13	0 65 HI	1130	12	12	100	10.2		E,7	Um020	3.8
'	Kapka	ONI	5	-10.41	3940	6	16	10.2 236	236		BMOM	AU 1007	140,3
- 1			10	e 10 An	3940	20	20	19.8	19.8	301	KNOGHOIL	L' Bers enR	8.6
	omeono	44	1		350	40	40	10	1110	34.1-12-240	2.4	gemany Les	54
	Empono80	PETAL	9	+ 8AL + 16AI	1410	20	18	10	20	34-2-12 × 200		18,7	15
	cemka	NB	P	0 10 A"	1100	2	2	8.2	2.2	105861936194		BCHIST-ES	61.5
			R 3 15	DRR HT	1250	8	9	11,3	11.3	+ 10 A 8 + 82 A 9	13, 9	BCN/55-69	
			12	- 10 A E	2940	6	6	6.6	17,6	+8A!	14.9	0,385	39.9
	Cemka I	V 4	13	0.22 An	1130	6	6	2.26	226	216AI	2,4	0,395	
12042			1/5	- 10 AT	1280	9	9	11.5	6.70			210000	102,9
	KODKOCI	12	10	# 10AI	2940	15	65	176	11.5	1	MOM	Umozo:	
	Omdenorio	e cmep.	15	* 10 Aii	2910	0	20	5.9	14.5	30	YHANAM	ACRAPA	7.8
- 1			8	2861	350	20	30	25	3.5	31-1-12 1240	1,6	PRIS	36
	POOTOBOUNSIE		17	* 16 AI	1410	12	é	7.4	24	10000010 -10			2.5
	Cemxa J	N5	18	0 10AT	1145	6	3	43	7.3	19281-8301	VYEMON N	18 1 BCH-155 69	43.5
12041-3				0 22 MI	1100	9	9	10.0	10.0	0 10A L 0 22A E	202	2.98	60.2
2000			26	# 10A ii	1250	7	7	100	10.0	98AI	26,4	0.395	10,4
1			26 20	010AI	4020	3	3	12.1	12.1	21881	32	20	6.4
ł		-	32	+10AT	2010	2	2	13.8	13.8	a 16 A !	114	1,58 Umozo;	136,4
t			23	0 10 AT	1027	1	1	4.0	4.0		2014	AU 1007	139,6
	Cemka	N6	24	* OAT	1700	6	50	3.9	102	441	ene :	AT Demsen?	16,8
1			58	· 22 15	1130	9	9	10.2	10.2		KUDGHAS		
			26	010AV	1020	3	7	10.2	10.2	317-13-12-1240		225	54
. [20	0 10 AS	1600	9	3	9.05		30-2;-12-20		18.7	9,4
ļ	1	4	19	a 10.41	2010	2	8	.13,8	13.8	101.2 CIA	· IOCK HA;	15xCHILTO	63.4
	KOPKOL	N3	L30	+ 10 AT	1898	15	2	4.00	4.02	no POCT 19	K 81 * 73 C 4 155 * 69	48/11014	
	ambenous		10	# 10AZ	250	9	9	363	1.1.03	I			
1	етерикни		8	* 8A! * 8A!	250	46	96		36	1			
	Страповочно	IE NETAN	29	# 18 AI	1570	2	74	15.4	11	ł			
1	Cemka	NO	18	0 10 AT	1145	5	3	32	15,4				
Ī	CHANG	· / /	L 3	# 10 A!	1100	6	9	23	73	010 Ai	132,4	0619	87 9
1			27	0 10 Ju	1250	8	3	100	10,0	0 22 Ny	20,2	2,98	817
I	5.		27	+ 10 Ju	4850	3	3	100	10.8	08AI	3.2	0,395	11.1
j			19	# 10A	2010	2	8	188	12.8	a 18 A I	1,2	1.58	1.9
ł		····	32	+ 10A 5 + 10A 5	1027	1		20	4.6	016 AT	11.00	Umozo:	161.3
12044			24	+10 AU	1175	6	5	300	103	B MON 44	iene	AT 100T	143,8
1	Cemko	NS	25	• 10 1 1 1	1130	L	3	160	3.8	[A [Bersen2	17.5
1			27	+ 10 A I	4270	3	8		10,2	30000	HOLE	Gernanu	
			81	+ 10 10	4850	3	3	102	10,24	3Q-1;-R1240	2.4	22.5	54
1	,		12	0 10 AT	2010	2	R	18:8	مني رجور	30.2:-12/20			9.4
1	Kapkae	N4	33	# 10 A II	1027 2060 9 9 0 250	2	R.	20	4.0	34.2;-12120 101-2 CH 1010CT 1 1181 BCF	7-10/110	, ISXCHATI	63,4
ł	OMORABAR	VP.	70	# 10 A T	990	48	17	100	1,03	ON PORT	, 14CMU, 9281-92	CYYETON	00, 7
1	CMEDIKH,	4	8	28VI 218A5	35Q 157Q	46	18	10:26	100	118 ACA	1-155-6	9	
, 5	Prponoboum	אר הפתחו <i>ו</i>	29	4 18 h 2	1570	ع	46	12	12				
	ng bemo		6	-12×240	400	1		3.2	16,6				
א ממחמשאל	gg bemo	1116	4	-12/200	200	1	<u> </u>	0.4		YCARRUO	י שמוואסי	нения мар	~~
	3A-L		40	~ 16 AT	600	2							<i>)</i>
Ποπηρεδη	iocerno 6	BOKES	MANY	Remark		_		02		ciaven	. см. на	## 8 🛊 134 m	
HO 1	TOOK WA	POHO	W CM	UETTUT PEHHLI	/XX			12					
			T		ī					<i>t</i> ,			
akano /	12041-1	12041-2	12011	1204-4									
akano /			1	1800 4	ł								
akano'		4	6	6			_						
aknoro' lay Map in ka anaka	_		6	6	 		4						
akano'	6	4 .	1				1	1	Kene	30gemann	ore eman	oramore ou	2081
3A-1	6	·	 	,			1	1	osm	DODPONKHOL	X HOEM	CHOBURK	ו שאיים ניביאים
3/1-1	_	2	1	1						4 ~ KDDKD			
3A-1	6	·	1	1			-	_	003	IN OCCUE	DHOIX S	12 1	(Z. 1
Manara Manara Manara Manara	6	·	1	1	Hou.OHC	Pacrabo,		#	Pney	NADNHARA	DHOIX S	op. Cradus	Yacta Hacu
3A-1	6	·	1	1	Hay OHC Cocney(NC	Пастава; Ивянски	Zo.	1	Prey	CHAMAGE	เด นเชียเฉีย อักอหอชิ	op. Cradus I	Yaced Hace
3A-1	6	·	1	1	Hoy OUC Incney(UC In uwx op.	Паставал Ивянский Курнецо	8		Prey	DHONY CON	เฉ นเชื้อเฉีย อักอหถชิ ยหอห :	Op. Cradus	Yacıa Hacı
3A-1	6	·	1	1	Hay OHC Cocney(UC Country Constant Cons	Паставан Ивянския Кузнеца Крапп	Do Ros	130	Prey	и фина ци рнатуры рных ст и-1; 1204	19 1186180 600008 8110K; 12;120W:	3	Yacıa Hacı
3A-1	6	·	1	1	Hov. OHC Iceney OU. In uwx op. Ber ipuse. Iposee yn. Coomobug	Racrabas Montecker Kystecca Kponn Kponn	bo King	المالية	Prey	DHONY CON	19 1186180 600008 8110K; 12;120W:	3 Quera Di	MACIO HORI

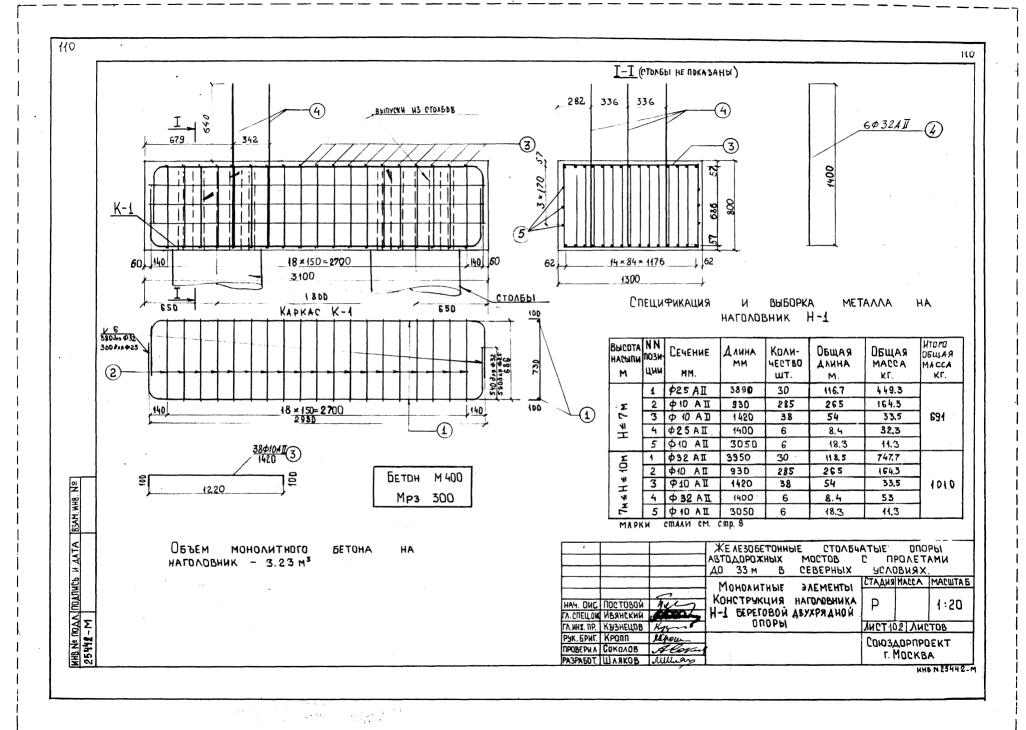

.

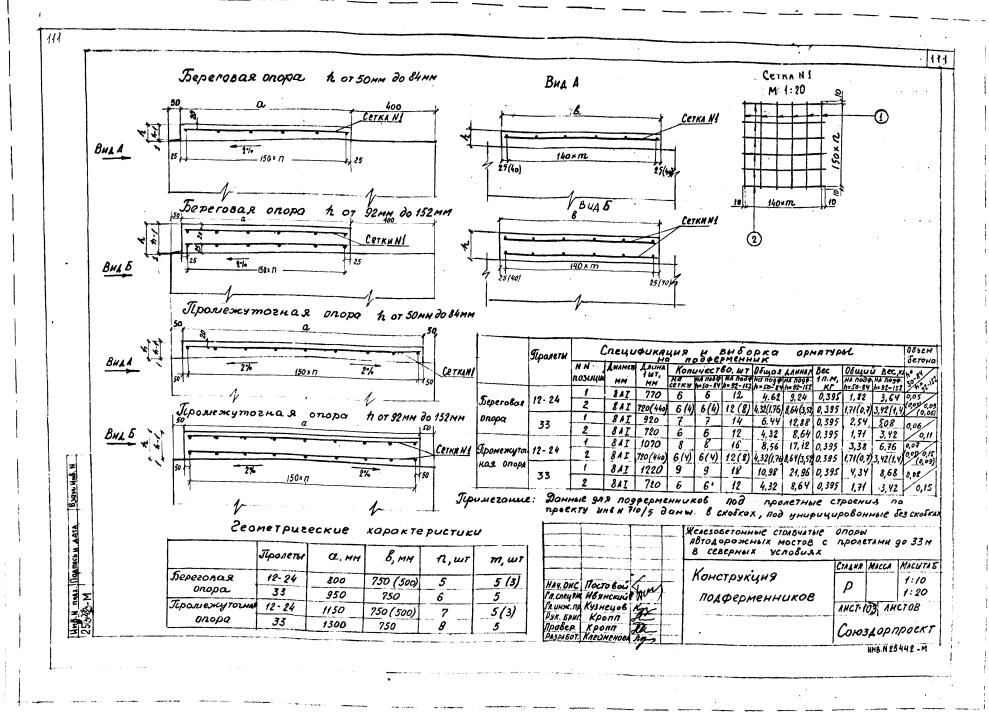

. ---

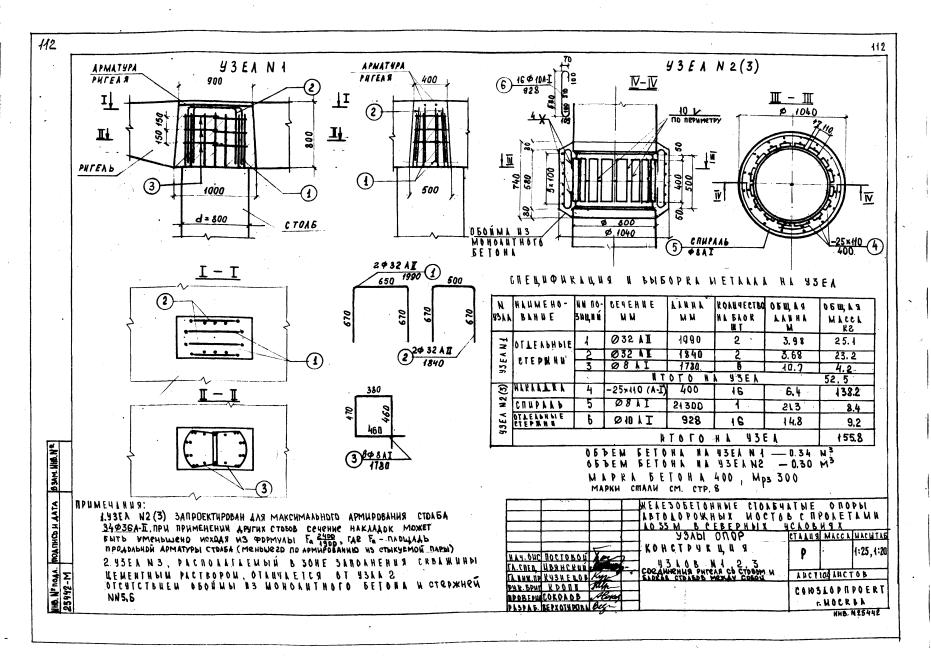


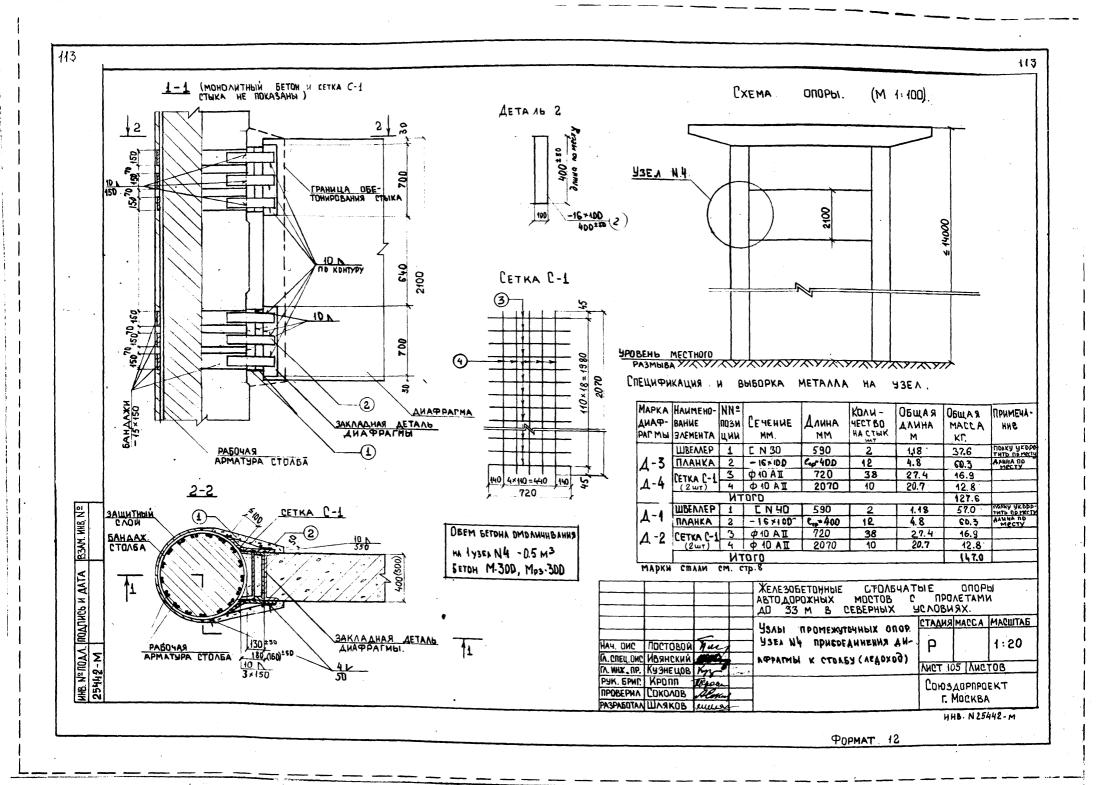


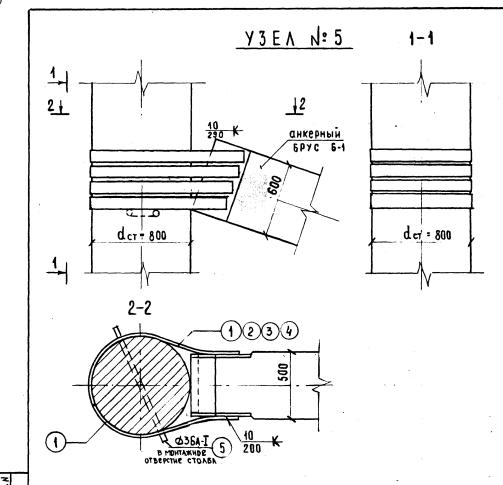


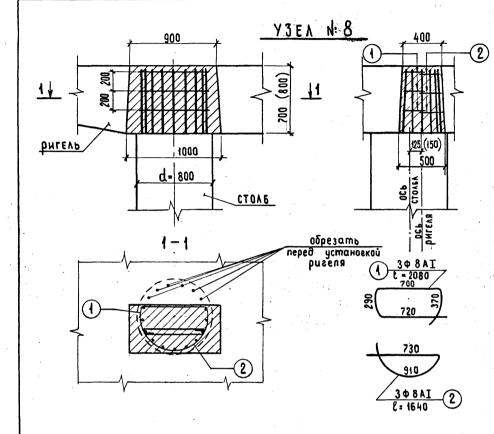


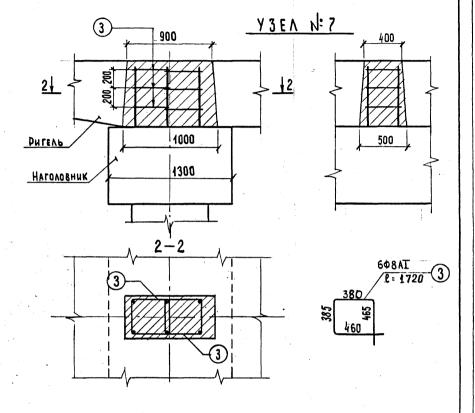









HA YSEA Nº 5 СПЕЦИФИКАЦИЯ BHEOPKA METANNA


МАрки стали см. стр. 8

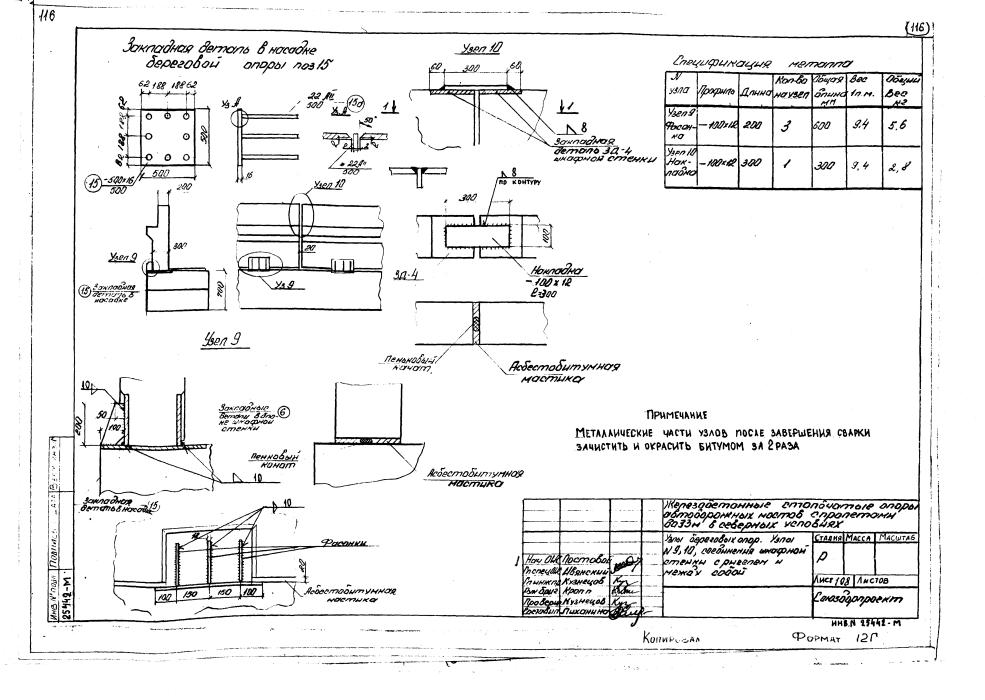
и 103 ж ций	M W CE 4EH HE	АНИЛД ММ	KOAH4ECTBO W T	инилд фашао М	КГ КА ШВО КГ
1	-12*100	2710	1	2.71	25.5
2	-12×100	2835	- 4 '	2.84	26.8
3	-12 >100	2960	1	2, 96	27.9
4	-12×100	3090	1	3.09	29.4
5	Ø 36 A-I	1000	1	4.00	8. 0
		ИТ	0 FO (A-I)	296

300 1300 10 RUHAPAMNAU 1 METAAANHECKUE HACTH YSADS NOCKE SABEPWEHHR CBAPKN SAHNCTHTO N DKPACHT ENTYMOM 34 2 PASA.
2. BMCCTD DKPACKU Y3EA NG MOMET BUTTO DEETDHAPDBAH BETDHOM M-2DD, MP3-2DD **XEVE3OPELOHHPIE** CTOABYATHE **ХИНЖОЧОДОТВА** RPOAETAMM MOCTOB C CEBEPHЫX AD 33 M 8 YCAGBURX CTALUR MACCA MACUTA 6 YANDI BEPETOB HIX ONOR HAY. DUC MOCTOBON Y3AHI NN5HB QHKEPHDIX 1:20 TA. CREWOND HBAHCKHH 9000 TA. HHX. RP AUCT 106 | AUCTOB KY3HELOB Ky Pyk. Spur. KPOnn Thrown СОЮЗДОРПРОЕКТ PROBEPHA KYSHELLOB Kys. T. MOCKBA PASPAGOTAN TYMHKOBA Blew NHB, N25442 - M

Y3EN Nº 6 Выпуски ф25 AII t = 1280 3 200 AHKEPHHU SPYC 5-1 300 900 400 3 - 3AHKEPHAR TANTA N-1 80 9

СПЕЦИФИКАЦИЯ И ВЫБОРКА МЕТАЛЛА НА УЗЕЛ

H: Y3NA	зипи <u>и</u> иу по-	CEYEHUE	WW YYNHY	KOVNAEC180	81,Ш30 Анилд М	8АШВВ Асса Ту
	1	IA8 Φ	2080	3	6. 24	2.5
Y3EN 108	2	D 8 AI	1640	3	4. 92	2, 0
		ит	oro H	A Y3E	٨	4.5
YBEN NOT	3	Φ8AI	1720	6	10.32	4.1
INCH MI		N T I	H 070	A 731	١٨	4.1


ОБЪЕМ БЕТОНА НА УЗЕЛ $N:8-0.3~(0.34)~{\rm M}^3$ объем бетона на УЗЕЛ $N:7-0.3~(0.34)~{\rm M}^3$ марка бетона 400, $M_{\rm P}3~300.$

ПРИМЕЧАНИЯ:

- 1. YSER HOLD AN TOUMENUTER BOOK BLOKY CTORES CB-L-5
- 2. Размеры в скобках даны для ригеля под пролетное строение ℓ = 33 м.

		ЖЕЛЕЗОБЕТОННЫЕ СТОЛБЧ/ АВТОДОРОЖНЫХ МОСТОВ ДО 33 М В СЕВЕРНЫ	C	O	HMAT
		93VPI	СТАДИЯ	MACCA	МАСШТАВ
		PEDELOBPIX OUDD		-	
НАЧ. ОНС ПОСТОВО	H Your] чзлы Nº Nº 7,8 средине-	l P		1:25
FA.CREY.ONG HBAHCKH	ii decires				
ГЛ. ИНЖ. ПР. КУЗНЕЦО	8 Kygra	HUN PUTEAR CHATOAOBHUKOM U	AUCT 107 AUCTOB		
PYK. SPHT. KPONN	Mrom		1	10010	0000547
TPOBEPHA COKOAOS	Alones	1	СОЮЗДОРПРОЕКТ		
PASPAGOTAN TYMHKOB	^ /3C-04			r, Moci	K B Q

HHB. N 25442 - M

